$B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE MEAN LIFE

Each measurement of the *B* mean life is an average over an admixture of various bottom mesons and baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different *B* mean life.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. This is a weighted average of the lifetimes of the five main b-hadron species (B^+ , B^0 , B^0_{sH} , B^0_{sL} , and Λ_b) that assumes the production fractions in Z decays (given at the end of this section) and equal production fractions of B^0_{sH} and B^0_{sL} mesons.

VALUE (10⁻¹² s) EVTS DOCUMENT ID TECN COMMENT

1.5667 ± 0.0029 OUR EVALUATION

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
<sup>1</sup> ABDALLAH
                                                                  DLPH e^+e^- \rightarrow Z
1.570 \pm 0.005 \pm 0.008
                  +0.035
                                       <sup>2</sup> ABE
1.533 \pm 0.015
                                                                  CDF
                                                                             p\overline{p} at 1.8 TeV
                    -0.031
                                       <sup>3</sup> ACCIARRI
                                                                   L3
1.549 \pm 0.009 \pm 0.015
                                       <sup>4</sup> ACKERSTAFF 97F
1.611 \pm 0.010 \pm 0.027
                                                                  OPAL
                                       <sup>4</sup> ABREU
                                                                  DLPH e^+e^- \rightarrow Z
1.582 \pm 0.011 \pm 0.027
                                       <sup>5</sup> ABREU
                                                                  DLPH e^+e^- \rightarrow Z
1.575 \pm 0.010 \pm 0.026
                                       <sup>6</sup> BUSKULIC
1.533 \pm 0.013 \pm 0.0229.8 k
                                                            96F
                                                                  ALEP
                                       <sup>7</sup> ABE,K
                                                            95B
                                                                  SLD
1.564 \pm 0.030 \pm 0.036
                                       <sup>8</sup> ABREU
1.542\ \pm0.021\ \pm0.045
                                                            94L
                                                                  DLPH e^+e^- \rightarrow Z
        +0.24
                                       <sup>9</sup> ABREU
                  \pm 0.03
1.50
        -0.21
                                      10 ABF
       \pm 0.06
                  \pm 0.065344
                                                                   CDF
                                                                             Repl. by ABE 98B
1.46
        +0.14
                                     <sup>11</sup> ABREU
                  \pm 0.15 188
1.23
                                                                            Sup. by ABREU 94L
        -0.13
                                     <sup>12</sup> ABREU
                  \pm 0.12 253
                                                                  DLPH
                                                                            Sup. by ABREU 94L
1.49
       \pm 0.11
        +0.16
                                     <sup>13</sup> ACTON
                                                                  OPAL e^+e^- \rightarrow Z
1.51
                   \pm 0.11 130
        -0.14
                                     <sup>14</sup> ACTON
                                                                            e^+e^- \rightarrow Z
1.523 \pm 0.034 \pm 0.0385372
                                     <sup>14</sup> ADRIANI
1.535 \pm 0.035 \pm 0.0287357
                                                                             Repl. by ACCIARRI 98
                                     <sup>15</sup> BUSKULIC
                                                            930
                                                                  ALEP
                                                                             e^+e^- \rightarrow Z
1.511 \pm 0.022 \pm 0.078
                                     <sup>16</sup> ABREU
        \pm 0.10
                                                                   DLPH
                                                                            Sup. by ABREU 94L
1.28
                                     <sup>17</sup> ACTON
1.37
        \pm\,0.07
                  \pm 0.061354
                                                                   OPAL
                                                                            Sup. by ACTON 93L
                                     <sup>18</sup> BUSKULIC
1.49
        \pm 0.03
                  \pm 0.06
                                                            92F
                                                                  ALEP
                                                                            Sup. by BUSKULIC 96F
        +0.19
                                     <sup>19</sup> BUSKULIC
                                                                             e^+e^- \rightarrow Z
1.35
                  \pm 0.05
                                                                  ALEP
        -0.17
                                     <sup>20</sup> ADEVA
                                                            91H L3
                                                                             Sup. by ADRIANI 93K
       \pm 0.08
                  \pm 0.091386
1.32
        ^{+\,0.31}_{-\,0.25}
                                     <sup>21</sup> ALEXANDER 91G OPAL
                                                                            e^+e^- \rightarrow Z
                  \pm 0.15
1.32
                                     <sup>22</sup> DECAMP
                                                            91c ALEP
                                                                            Sup. by BUSKULIC 92F
1.29
       \pm 0.06
                  \pm 0.102973
```

https://pdg.lbl.gov Page 1 Created: 6/1/2021 08:33

1.36	$+0.25 \\ -0.23$			²³ HAGEMANN	90	JADE	Eee = 35 GeV
1.13	±0.15			²⁴ LYONS	90	RVUE	
1.35	±0.10	±0.24		BRAUNSCH	89 B	TASS	$E_{\rm cm}^{\it ee}=$ 35 GeV
0.98	± 0.12	±0.13		ONG	89	MRK2	$E_{cm}^{\mathit{ee}} = 29 \; GeV$
1.17	$+0.27 \\ -0.22$	$^{+0.17}_{-0.16}$		KLEM	88	DLCO	Eee 29 GeV
1.29	±0.20	±0.21		²⁵ ASH	87	MAC	$E_{cm}^{\mathit{ee}} = 29 \; GeV$
1.02	$+0.42 \\ -0.39$		301	²⁶ BROM	87	HRS	Eee 29 GeV

¹ Measurement performed using an inclusive reconstruction and *B* flavor identification technique.

² Measured using inclusive $J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$ vertex.

³ ACCIARRI 98 uses inclusively reconstructed secondary vertex and lepton impact parameter.

eter. ⁴ ACKERSTAFF 97F uses inclusively reconstructed secondary vertices.

⁵ Combines ABREU 96E secondary vertex result with ABREU 94L impact parameter result.

⁶BUSKULIC 96F analyzed using 3D impact parameter.

⁷ ABE,K 95B uses an inclusive topological technique.

⁸ ABREU 94L uses charged particle impact parameters. Their result from inclusively reconstructed secondary vertices is superseded by ABREU 96E.

 $^{^9}$ From proper time distribution of $b o J/\psi(1S)$ anything.

¹⁰ ABE 93J analyzed using $J/\psi(1S) \rightarrow \mu\mu$ vertices.

¹¹ ABREU 93D data analyzed using $D/D^*\ell$ anything event vertices.

¹²ABREU 93G data analyzed using charged and neutral vertices.

¹³ACTON 93C analysed using $D/D^*\ell$ anything event vertices.

 $^{^{14}}$ ACTON 93L and ADRIANI 93K analyzed using lepton (e and μ) impact parameter at Z.

¹⁵ BUSKULIC 930 analyzed using dipole method.

 $^{^{16}}$ ABREU 92 is combined result of muon and hadron impact parameter analyses. Hadron tracks gave $(12.7\pm0.4\pm1.2)\times10^{-13}$ s for an admixture of B species weighted by production fraction and mean charge multiplicity, while muon tracks gave $(13.0\pm1.0\pm0.8)\times10^{-13}$ s for an admixture weighted by production fraction and semileptonic branching fraction

¹⁷ ACTON 92 is combined result of muon and electron impact parameter analyses.

¹⁸ BUSKULIC 92F uses the lepton impact parameter distribution for data from the 1991

¹⁹ BUSKULIC 92G use $J/\psi(1S)$ tags to measure the average b lifetime. This is comparable to other methods only if the $J/\psi(1S)$ branching fractions of the different b-flavored hadrons are in the same ratio.

Using $Z \to e^+ X$ or $\mu^+ X$, ADEVA 91H determined the average lifetime for an admixture of B hadrons from the impact parameter distribution of the lepton.

²¹ Using $Z \to J/\psi(1S)$ X, $J/\psi(1S) \to \ell^+\ell^-$, ALEXANDER 91G determined the average lifetime for an admixture of B hadrons from the decay point of the $J/\psi(1S)$.

²² Using $Z \rightarrow eX$ or μX , DECAMP 91C determines the average lifetime for an admixture of B hadrons from the signed impact parameter distribution of the lepton.

²³ HAGEMANN 90 uses electrons and muons in an impact parameter analysis.

²⁴ LYONS 90 combine the results of the *B* lifetime measurements of ONG 89, BRAUN-SCHWEIG 89B, KLEM 88, and ASH 87, and JADE data by private communication. They use statistical techniques which include variation of the error with the mean life, and possible correlations between the systematic errors. This result is not independent of the measured results used in our average.

 $^{^{25}}$ We have combined an overall scale error of 15% in quadrature with the systematic error of ± 0.7 to obtain ± 2.1 systematic error.

²⁶ Statistical and systematic errors were combined by BROM 87.

CHARGED b-HADRON ADMIXTURE MEAN LIFE

<i>VALUE</i> (10^{-12} s)	DOCUMENT I	'D	TECN	COMMENT
$1.72\pm0.08\pm0.06$	¹ ADAM	95	DLPH	$e^+e^- ightarrow Z$
¹ ADAM 95 data analyzed us	sing vertex-charge	techniqu	e to tag	<i>b</i> -hadron charge.

NEUTRAL b-HADRON ADMIXTURE MEAN LIFE

$VALUE (10^{-12} \text{ s})$	DOCUMENT I	'D	TECN	COMMENT	
$1.58 \pm 0.11 \pm 0.09$	¹ ADAM	95	DLPH	$e^+e^- ightarrow Z$	
$^{ m 1}$ ADAM 95 data analyzed us	ing vertex-charge	techniqu	ie to tag	b-hadron charge.	

MEAN LIFE RATIO $au_{ ext{charged }b- ext{hadron}}/ au_{ ext{neutral }b- ext{hadron}}$

VALUE	DOCUMENT ID		TECN	COMMENT
$1.09^{igoplus 0.11}_{-0.10} {\pm 0.08}$	¹ ADAM	95	DLPH	$e^+e^- ightarrow Z$
1 ADAM OF data analysis dust		. ساد سام		h haduan ahauma

¹ ADAM 95 data analyzed using vertex-charge technique to tag *b*-hadron charge.

$|\Delta \tau_b|/\tau_{b,\overline{b}}$

 $\tau_{b,\overline{b}}$ and $|\Delta\tau_b|$ are the mean life average and difference between b and \overline{b} hadrons.

VALUE	DOCUMENT ID		TECN	COMMENT
$-0.001\pm0.012\pm0.008$	¹ ABBIENDI	99J	OPAL	$e^+e^- ightarrow Z$

 $^{^{1}}$ Data analyzed using both the jet charge and the charge of secondary vertex in the opposite hemisphere.

\overline{b} PRODUCTION FRACTIONS AND DECAY MODES

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

Mode

Fraction (Γ_i/Γ)

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. We no longer provide world averages of the b-hadron production fractions, where results from LEP, Tevatron and LHC are averaged together; indeed the available data (from CDF and LHCb) shows that the fractions depend on the kinematics (in particular the p_T) of the produced b hadron. Hence we would like to list the fractions in Z decays instead, which are well-defined physics observables. The production fractions in $p_{\overline{p}}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to \ B^+) = \mathsf{B}(\overline{b}\to \ B^0) \\ \mathsf{B}(\overline{b}\to \ B^+) + \mathsf{B}(\overline{b}\to \ B^0) + \mathsf{B}(\overline{b}\to \ B^0) + \mathsf{B}(b\to \ b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

$$cor(B_s^0, b ext{-baryon}) = 0.064$$

 $cor(B_s^0, B^{\pm} = B^0) = -0.633$
 $cor(b ext{-baryon}, B^{\pm} = B^0) = -0.813.$

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

Γ_1	B^+	$(40.8 \pm 0.7)\%$
Γ_2	B^0	(40.8 \pm 0.7) %
Γ3	B_s^0	($10.0~\pm~0.8$) %
Γ_4	B_c^+	
Γ_5	<i>b</i> -baryon	$(8.4 \pm 1.1)\%$

DECAY MODES

Semileptonic and leptonic modes

Γ_6	u anything	(23.1 \pm 1.5) %	
Γ_7	$\ell^+ u_\ell$ anything	[a] ($10.69\pm~0.22)~\%$	
Γ ₈	$e^+ u_e$ anything	($10.86\pm~0.35)~\%$	
Γ ₉	$\mu^+ u_\mu$ anything	$(\ 10.95 {+\atop -}\ 0.29)\ \%$	
	$D^-\ell^+ u_\ell$ anything	[a] (2.2 \pm 0.4)%	S=1.9
Γ_{11}	$D^-\pi^+\ell^+ u_\ell$ anything	$(4.9 \pm 1.9) \times 10^{-3}$	

https://pdg.lbl.gov

Page 4

Charmed meson and baryon modes						
Γ ₂₉	$\overline{D}{}^0$ anything	(58.7 ± 2.8) %				
Γ ₃₀	$D^0D_s^{\pm}$ anything	$[c]$ (9.1 $^{+}_{-}$ 4.0) %				
Γ ₃₁	$D^{\mp}D_{s}^{\pm}$ anything	$[c]$ (4.0 $^+$ 2.3) %				
Γ ₃₂	$\overline{D}{}^0D^0$ anything	$\left[c ight]$ $\left(\begin{array}{cc} 5.1 \ + \ 2.0 \ 1.8 \end{array}\right) \%$				
Γ ₃₃	D^0D^\pm anything	[c] $(2.7 + 1.8 - 1.6)$ %				
Γ ₃₅	D^\pmD^\mp anything D^0 anything D^+ anything	$[c] < 9 \times 10^{-3}$	CL=90%			
	D^- anything	($22.7~\pm~1.6$) %				
Γ ₃₈	$D^*(2010)^+$ anything	(17.3 ± 2.0) %				
Γ ₃₉	$D_1(2420)^0$ anything	$(5.0\ \pm\ 1.5)\ \%$				
Γ_{40}	$D^*(2010)^{\mp}D_s^{\pm}$ anything	$[c]$ (3.3 $^+$ 1.6) %				

Γ ₄₁	$D^0D^*(2010)^\pm$ anything		[c]	(3.0	+ 1.3 - 0.9	1) %		
Γ ₄₂	$D^*(2010)^\pmD^\mp$ anything		[c]	(2.5	+ 1.2	2)%		
Γ ₄₃	$D^*(2010)^{\pm} D^*(2010)^{\mp}$ any	thing				± 0.4	•		
_	$\overline{D}D$ anything			(1	0	+11) %		
	$D_2^*(2460)^0$ anything					10	7)%		
	D_s^2 anything			•			1)%		
	D_s^+ anything			•			1)%		
	$\Lambda_c^{\frac{3}{4}}$ anything			(7.7	± 1.3	1)%		
Γ_{49}	$\frac{c}{c}/c$ anything		[d]	(11	6.2	± 3.2	2)%		
	Cha	rmonium	n mo	des					
Γ ₅₀	$J/\psi(1S)$ anything	····o····a··			1.16	± 0.3	10) %		
Γ ₅₁	$\psi(2S)$ anything			(3.06	± 0.3	30) ×	10^{-3}	
Γ_{52}	$\chi_{c0}(1P)$ anything			(1.5	± 0.6	5)%		
	$\chi_{c1}(1P)$ anything			•			1)%		
	$\chi_{c2}(1P)$ anything							10^{-3}	
Γ ₅₅	$\chi_c(2P)$ anything, $\chi_c \rightarrow c$	$\phi \phi$						10^{-7}	CL=95%
	$\eta_c(1S)$ anything	1) ×		
	$\eta_c(2S)$ anything, $\eta_c \to \phi$ $\chi_{c1}(3872)$ anything, $\chi_{c1} = 0$			(· < ·				10^{-7}	CL=95%
Γ ₅₈ Γ ₅₉	$X_{c1}(3915)$ anything, $X \rightarrow X(3915)$ anything, $X \rightarrow X(3915)$							_	CL=95%
. 59	, , , ,				0.1		^	10	32 3370
Г		or <i>K</i> * r	nod€		2 1	1 ·	1) 🗸	10-4	
Γ ₆₀	$\overline{S}\overline{\nu}\nu$	B1							CL=90%
Leo 1 01	K^{\pm} anything	DI) %		CL—9070
	K_S^0 anything			•			9)%		
	<i>y</i>	Pion mo	doc	Ì			ŕ		
Γ _{6.4}	π^{\pm} anything	rion inc	Jues	(39	7	+21) %		
Γ ₆₅	π^0 anything		[d]			±60			
	ϕ anything			•		± 0.2	,		
		Baryon m	o do						
Гсп	p/\overline{p} anything	oai yon in	loues		2 1	± 1.3	1) %		
	$\Lambda/\overline{\Lambda}$ anything			•		± 0.6	,		
	b-baryon anything			•		± 2.8	,		
Γ ₇₀	$\frac{1}{\Lambda_h^0}$ anything			(-	·-		, , ,		
	Ξ_h^+ anything								
, -	2	O4b							
Γ70	charged anything	Other mo			7	± 7) %		
			[4]					10-5	
	hadron ⁺ hadron ⁻					0.1	•	10^{-5}	
I ₇₄	charmless			(7	± 21) ×	10^{-3}	
https	://pdg.lbl.gov	Page 6			(Create	ed: 6	/1/20	21 08:33

$\Delta B = 1$ weak neutral current (B1) modes

 Γ_{75} $e^+\,e^-$ anything $$\rm B1$$ < 3.2 $\times\,10^{-4}$ CL=90% Γ_{77} $\nu\,\overline{\nu}$ anything

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [c] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [d] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE BRANCHING RATIOS

 $\Gamma(B^+)/\Gamma_{ ext{total}}$ Γ_1/Γ

"OUR EVALUATION" is an average from Z decay obtained by the Heavy Flavor Averaging Group (HFLAV) as described at https://hflav.web.cern.ch/.

VALUE DOCUMENT ID TECN COMMENT

0.408 \pm 0.007 OUR EVALUATION

1 ABDALLAH 03K DLPH $e^+e^- \rightarrow Z$

 $\Gamma(B^+)/\Gamma(B^0)$ VALUE

DOCUMENT ID

TECN
COMMENT

1.054 \pm 0.018 \pm 0.062

AALTONEN

OBN
CDF $p \overline{p}$ at 1.96 TeV

 $\Gamma(B^0)/\Gamma(B^+)$ Γ_2/Γ_2

 $\Gamma(B_s^0)/\Gamma(B^+)$ Γ_3/Γ_1 VALUE DOCUMENT ID TECH COMMENT

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

¹ The analysis is based on a neural network, to estimate the charge of the weakly-decaying b hadron by distinguishing its decay products from particles produced at the primary

¹AAIJ 20V measures the average value using the observed $B_s^0 \to J/\psi \phi$ and $B^+ \to J/\psi K^+$ yields, over the ranges b-hadron p_T of 0.5 and 40 GeV and η of 2.0 and 6.5. The value is not used in averages as BR-related systematic uncertainties are not evaluated.

² AAIJ 20V reports $[\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B^+)] \times [B(B_s^0 \to J/\psi(1S)\phi)] / [B(B^+ \to J/\psi(1S)K^+)] = 0.1238 \pm 0.0010 \pm 0.0022$ which we multiply or divide by our best values $B(B_s^0 \to J/\psi(1S)\phi) = (1.08 \pm 0.08) \times 10^{-3}$, $B(B^+ \to J/\psi(1S)K^+) = (1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

- 3 AAIJ 20V reports $[\Gamma(\overline{b} o B_s^0)/\Gamma(\overline{b} o B^+)] imes [B(B_s^0 o J/\psi(1S)\phi)] \ / \ [B(B^+ o B_s^+)]$ $J/\psi(1S)K^+)] = 0.1270 \pm 0.0007 \pm 0.0022$ which we multiply or divide by our best values B($B_S^0 \to J/\psi(1S)\phi$) = $(1.08 \pm 0.08) \times 10^{-3}$, B($B^+ \to J/\psi(1S)K^+$) = $(1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values
- 4 AAIJ 20V reports the results in two different data sets, and we quote here the weighted average.
- $^{5}\,\text{AAIJ}\,\,^{20V}\,\,\text{reports}\,\,[\Gamma(\overline{b}\rightarrow \ B_{S}^{0})/\Gamma(\overline{b}\rightarrow \ B^{+})]\,\times\,[\mathrm{B}(B_{S}^{0}\rightarrow \ J/\psi(1S)\phi)]\,\,/\,\,[\mathrm{B}(B^{+}\rightarrow \ B_{S}^{0})/(B^{+})]$ $J/\psi(1S)K^+)] = 0.1326 \pm 0.0007 \pm 0.0023$ which we multiply or divide by our best values $B(B_s^0 \to J/\psi(1S)\phi) = (1.08 \pm 0.08) \times 10^{-3}$, $B(B^+ \to J/\psi(1S)K^+) =$ $(1.020 \pm 0.019) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 $\Gamma(B_s^0)/\big[\Gamma(B^+)+\Gamma(B^0)\big]$

 $\Gamma_3/(\Gamma_1+\Gamma_2)$

OUR EVALUATION" is an average from Z decay obtained by the Heavy Flavor Averaging Group (HFLAV) as described at https://hflav.web.cern.ch/.

DOCUMENT ID 0.1230 ± 0.0115 OUR EVALUATION • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AAIJ 0.122 ± 0.006 19AD LHCB pp at 13 TeV $0.134\ \pm0.004\ ^{+0.011}_{-0.010}$ 2 AALL 12J LHCB pp at 7 TeV ³ AAIJ 11F LHCB pp at 7 TeV $0.1265 \pm 0.0085 \pm 0.0131$ $0.128 \begin{array}{l} +0.011 \\[-4pt] -0.010 \end{array}$ ⁴ AALTONEN 08N CDF ± 0.011 $p\overline{p}$ at 1.96 TeV ⁵ AFFOLDER 00E CDF 0.213 ± 0.068 $p\overline{p}$ at 1.8 TeV $0.21 \pm 0.036 \, ^{+0.038}_{-0.030}$ 6 ABE 99P CDF $\overline{p}p$ at 1.8 TeV

 $\Gamma(B_s^0)/\Gamma(B^0)$

"OUR EVALUATION" has been provided by the Heavy Flavor Averaging Group (HFLAV, https://hflav.web.cern.ch/)

(· · · = / · · · · · · · · · · · · · · ·	J		
VALUE	DOCUMENT ID	TECN	COMMENT
0.246 ± 0.023 OUR EVALUATION			
0.239±0.016 OUR AVERAGE			
$0.240 \pm 0.004 \pm 0.020$	$^{ m 1}$ AAD	15CM ATLS	pp at 7 TeV
$0.238 \pm 0.004 \pm 0.015 \pm 0.021$	² AAIJ	13P LHCB	pp at 7 TeV
https://pdg.lbl.gov	Page 8	Cre	ated: 6/1/2021 08:33

 $^{^{}m 1}$ AAIJ $^{
m 19}$ AD measured the average value using b-hadron semileptonic decays and assuming isospin symmetry for b-hadron p_T of 4 and 25 GeV and η of 2 and 5.

 $^{^2}$ AAIJ 12J measured this value using b-hadron semileptonic decays and assuming isospin symmetry.

 $^{^3}$ AAIJ 11F measured $f_s/f_d=0.253\pm0.017\pm0.017\pm0.020$, where the errors are statistical, systematic, and theoretical. We divide their value by 2. Our second error combines systematic and theoretical uncertainties.

⁴ AALTONEN 08N reports $[\Gamma(\overline{b}\to B_s^0)/[\Gamma(\overline{b}\to B^+)+\Gamma(\overline{b}\to B^0)]] \times [B(D_s^+\to \phi\pi^+)] = (5.76\pm0.18^{+0.45}_{-0.42})\times10^{-3}$ which we divide by our best value $B(D_s^+\to B^0)$ $\phi\pi^+)=$ (4.5 \pm 0.4) imes 10 $^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^5}$ AFFOLDER 00E uses several electron-charm final states in $b\to c\,e^-$ X. 6 ABE 99P uses the numbers of $K^*(892)^0$, $K^*(892)^+$, and $\phi(1020)$ events produced in association with the double semileptonic decays $b \to c \mu^- X$ with $c \to s \mu^+ X$.

- ¹ The measurement is derived from the observed $B_s^0 \to J/\psi \phi$ and $B_d^0 \to J/\psi K^{*0}$ yields and a recent theory prediction of B($B^0_s \to J/\psi \phi$)/B($B^0_d \to J/\psi K^{*0}$). The second uncertainty combines in quadrature systematic and theoretical uncertainties.
- ² AAIJ 13P studies also separately the $p_T(B)$ and $\eta(B)$ dependency of $\Gamma(\overline{b} \to B_s^0)/\Gamma(\overline{b} \to B_s^0)$ (B^0) , finding $f_s/f_d(p_T) = (0.256 \pm 0.020) + (-2.0 \pm 0.6) \ 10^{-3} \ / \text{GeV/c} \ (p_T - \langle p_T \rangle)$ and $f_s/f_d(\eta) = (0.256 \pm 0.020) + (0.005 \pm 0.006) \ (\eta - \langle \eta \rangle)$, where $\langle p_T \rangle = 10.4 \ \text{GeV/c}$ and $\langle \eta \rangle = 3.28$.

$\Gamma(B_c^+)/[\Gamma(B^+)+\Gamma(B^0)]$

 $\Gamma_{4}/(\Gamma_{1}+\Gamma_{2})$

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
3.7 \pm 0.6 OUR AVERAGE				
$3.63 \pm 0.08 \pm 0.87$	¹ AAIJ	19AI	LHCB	pp at 7 TeV
$3.78 \pm 0.04 \pm 0.90$	¹ AAIJ	19AI	LHCB	pp at 13 TeV

¹ Measured using B_c^+ semileptonic decays.

 $\Gamma(b\text{-baryon})/\big[\Gamma(B^+)+\Gamma(B^0)\big] \qquad \qquad \Gamma_5/(\Gamma_1+\Gamma_2)$ "OUR EVALUATION" is an average from Z decay obtained by the Heavy Flavor Averaging Group (HFLAV) as described at https://hflav.web.cern.ch/.

0.103 ± 0.015 OUR EVALUATION

• • We do not use the following data for averages, fits, limits, etc.

0.259 ± 0.018	¹ AAIJ	19AD LHCB	pp at 13 TeV
$0.305 \pm 0.010 \pm 0.081$	² AAIJ	12J LHCB	pp at 7 TeV
$0.31 \ \pm 0.11 \ ^{+0.12}_{-0.08}$	³ AALTONEN	09E CDF	$p\overline{p}$ at 1.8 TeV
$0.22 \ ^{+0.08}_{-0.07} \ \pm 0.01$	⁴ AALTONEN	08N CDF	$p\overline{p}$ at 1.96 TeV
0.118 ± 0.042	^{3,5} AFFOLDER	00E CDF	$p\overline{p}$ at 1.8 TeV

- 1 AAIJ 19AD measured the average value for Λ_b^0 using semileptonic decays and assuming isospin symmetry for b-hadron p_T of 4 and 25 GeV and η of 2 and 5.
- 2 AAIJ 12J measured the ratio to be (0.404 \pm 0.017 \pm 0.027 \pm 0.105) \times [1 (0.031 \pm 0.004 \pm 0.003)×P $_T$]using b-hadron semileptonic decays where the P $_T$ is the momentum of charmed hadron-muon pair in GeV/c.We quote their weighted average value where the second error combines systematic and the error on B($\Lambda_c^+ \to p K^- \pi^+$).
- 3 AALTONEN 09E errata to the measurement reported in AFFOLDER 00E using the ho_{T} spectra from fully reconstructed B^0 and Λ_h decays.
- ⁴ AALTONEN 08N reports $[\Gamma(\overline{b} \rightarrow b\text{-baryon})/[\Gamma(\overline{b} \rightarrow B^+) + \Gamma(\overline{b} \rightarrow B^0)]] \times [B(\Lambda_c^+ \rightarrow b^+)]$ $pK^-\pi^+)]=(14.1\pm0.6^{+5.3}_{-4.4})\times10^{-3}$ which we divide by our best value B($\Lambda_C^+\to$ $pK^-\pi^+$) = $(6.28 \pm 0.32) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\nu \text{ anything})/\Gamma_{\text{total}}$

 Γ_6/Γ

VALUE	DOCUMENT ID	TECN	COMMENT
$0.2308 \pm 0.0077 \pm 0.0124$	1,2 ACCIARRI 96C	L3	$e^+e^- ightarrow Z$

¹ ACCIARRI 96C assumes relative b semileptonic decay rates $e:\mu:\tau$ of 1:1:0.25. Based on missing-energy spectrum.

 $^{^{5}}$ AFFOLDER 00E uses several electron-charm final states in $b
ightarrow c \, e^{-}$ X.

 $^{^2}$ Assumes Standard Model value for R_B .

$\Gamma(\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_7/Γ

"OUR EVALUATION" is an average of the data listed below, excluding all asymmetry measurements, performed by the LEP Electroweak Working Group as described in the "Note on the Z boson" in the Z Particle Listings.

VALUE	DOCUMENT ID		TECN	COMMENT
0.1069 ± 0.0022 OUR EVALUATION	N			
0.1064 ± 0.0016 OUR AVERAGE				
$0.1070 \pm 0.0010 \pm 0.0035$	$^{ m 1}$ HEISTER	02 G	ALEP	$e^+e^- ightarrow Z$
$0.1070 \pm 0.0008 {}^{+ 0.0037}_{- 0.0049}$	² ABREU	01L	DLPH	$e^+e^- ightarrow Z$
$0.1083 \!\pm\! 0.0010 \!+\! 0.0028 \\ -\! 0.0024$	³ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$
$0.1016\!\pm\!0.0013\!\pm\!0.0030$	⁴ ACCIARRI	00	L3	$e^+e^- ightarrow Z$
$0.1085 \pm 0.0012 \pm 0.0047$	^{5,6} ACCIARRI	96 C	L3	$e^+e^- ightarrow Z$
• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •
$0.1106 \pm 0.0039 \pm 0.0022$	⁷ ABREU	95 D	DLPH	$e^+e^- ightarrow Z$
$0.114\ \pm0.003\ \pm0.004$	⁸ BUSKULIC	94G	ALEP	$e^+e^- ightarrow Z$
$0.100 \pm 0.007 \pm 0.007$	⁹ ABREU	93 C	DLPH	$e^+e^- ightarrow Z$
$0.105 \pm 0.006 \pm 0.005$	¹⁰ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E

¹ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and the second error is the total systematic error including the modeling.

$\Gamma(e^+\nu_e$ anything) $/\Gamma_{\text{total}}$ Γ_8/Γ DOCUMENT ID TECN COMMENT 0.1086 ± 0.0035 OUR AVERAGE $0.1078 \pm 0.0008 {}^{+\, 0.0050}_{-\, 0.0046}$ ¹ ABBIENDI OOE OPAL $e^+e^- \rightarrow Z$ ^{2,3} ACCIARRI 96c L3 $0.1089 \pm 0.0020 \pm 0.0051$ ⁴ ABREU 93C DLPH $e^+e^- \rightarrow Z$ $0.107 \pm 0.015 \pm 0.007$ 260 ⁵ ADEVA 91c L3 $0.138 \pm 0.032 \pm 0.008$

https://pdg.lbl.gov

Page 10

² The experimental systematic and model uncertainties are combined in quadrature.

³ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b \bar{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

⁴ ACCIARRI 00 result obtained from a combined fit of $R_b = \Gamma(Z \to b \, \overline{b})/\Gamma(Z \to \text{hadrons})$ and B($b \to \ell \nu X$), using double-tagging method.

 $^{^{5}}$ ACCIARRI 96C result obtained by a fit to the single lepton spectrum.

 $^{^6}$ Assumes Standard Model value for R_B .

 $^{^7}$ ABREU 95D give systematic errors ± 0.0019 (model) and 0.0012 (R_c). We combine these in quadrature.

⁸ BUSKULIC 94G uses e and μ events. This value is from a global fit to the lepton p and p_T (relative to jet) spectra which also determines the b and c production fractions, the fragmentation functions, and the forward-backward asymmetries. This branching ratio depends primarily on the ratio of dileptons to single leptons at high p_T , but the lower p_T portion of the lepton spectrum is included in the global fit to reduce the model dependence. The model dependence is ± 0.0026 and is included in the systematic error.

⁹ABREU 93C event count includes ee events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100\pm0.007\pm0.007$.

 $^{^{10}\,\}mathrm{AKERS}$ 93B analysis performed using single and dilepton events.

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.086 ± 0.027	± 0.008		⁶ ABE	93E	VNS	$E_{ m cm}^{\it ee}=$ 58 GeV
$0.109 \begin{array}{l} +0.014 \\ -0.013 \end{array}$	± 0.0055	2719	⁷ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E
0.111 ± 0.028	±0.026		BEHREND	90 D	CELL	$E_{\rm cm}^{ee} = 43 \text{ GeV}$
$0.150\ \pm0.011$	±0.022		BEHREND	90 D	CELL	$E_{\rm cm}^{\it ee}=$ 35 GeV
0.112 ± 0.009	±0.011		ONG	88	MRK2	$E_{ m cm}^{ee} =$ 29 GeV
$0.149 \begin{array}{l} +0.022 \\ -0.019 \end{array}$			PAL	86	DLCO	Eee 29 GeV
0.110 ± 0.018	±0.010		AIHARA	85	TPC	$E_{ m cm}^{ee} =$ 29 GeV
0.111 ± 0.034	±0.040		ALTHOFF	84J	TASS	$E_{\rm cm}^{ee} = 34.6 \; {\rm GeV}$
$0.146\ \pm0.028$			KOOP	84		Repl. by PAL 86
0.116 ± 0.021	±0.017		NELSON	83	MRK2	$E_{\rm cm}^{\rm ee} = 29~{\rm GeV}$

¹ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \to b \, \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error

AKERS 93B analysis performed using single and dilepton events.

$\Gamma(\mu^+ u_{\mu}$ anything $)/\Gamma_{ m total}$			Γ ₉ /Γ
VALUE EVTS	DOCUMENT ID	TECN	COMMENT
$0.1095^{+0.0029}_{-0.0025}$ OUR AVERAGE	Į.		
$0.1096 \pm 0.0008 {}^{+ 0.0034}_{- 0.0027}$	¹ ABBIENDI 00	E OPAL	$e^+e^- ightarrow Z$
$0.1082\!\pm\!0.0015\!\pm\!0.0059$	^{2,3} ACCIARRI 96	c L3	$e^+e^- ightarrow Z$
$0.110 \pm 0.012 \pm 0.007$ 656	⁴ ABREU 93	c DLPH	$e^+e^- ightarrow Z$
$0.113\ \pm0.012\ \pm0.006$	⁵ ADEVA 91	.c L3	$e^+e^- ightarrow~Z$
• • • We do not use the followi	ng data for averages, fits	, limits, et	C. ● ● ●
$0.122\ \pm0.006\ \pm0.007$	³ UENO 96	AMY	e^+e^- at 57.9 GeV
$0.101 \ ^{+0.010}_{-0.009} \ \pm 0.0055$ 4248	⁶ AKERS 93	B OPAL	Repl. by ABBI- ENDI 00E
$0.104\ \pm0.023\ \pm0.016$	BEHREND 90	D CELL	$E_{\rm cm}^{ee} = 43 \text{ GeV}$
$0.148 \pm 0.010 \pm 0.016$	BEHREND 90	D CELL	$E_{\rm cm}^{ee} = 35 {\rm GeV}$
$0.118 \pm 0.012 \pm 0.010$	ONG 88	MRK2	E ^{ee} _{cm} = 29 GeV
$0.117\ \pm0.016\ \pm0.015$	BARTEL 87	JADE	E _{cm} = 34.6 GeV
$0.114\ \pm0.018\ \pm0.025$	BARTEL 85	J JADE	Repl. by BARTEL 87
$0.117\ \pm0.028\ \pm0.010$	ALTHOFF 84	G TASS	E ^{ee} _{cm} = 34.5 GeV
https://pdg.lbl.gov	Page 11	Creat	ed: 6/1/2021 08:33

 $^{^{\}rm error.}$ $^2\,{\rm ACCIARRI}$ 96C result obtained by a fit to the single lepton spectrum.

 $^{^3}$ Assumes Standard Model value for R_B .

⁴ ABREU 93C event count includes ee events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100\pm0.007\pm0.007$.

SADEVA 91c measure the average B($b \rightarrow eX$) branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain $0.113 \pm 0.010 \pm 0.006$. Constraining the initial number of b quarks by the Standard Model prediction (378 \pm 3 MeV) for the decay of the Z into $b\bar{b}$, the electron result gives $0.112 \pm 0.004 \pm 0.008$. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b\bar{b}$ width itself, this electron result gives $370 \pm 12 \pm 24$ MeV and combined with the muon result gives $385 \pm 7 \pm 22$ MeV.

 $^{^6}$ ABE 93E experiment also measures forward-backward asymmetries and fragmentation _ functions for b and c.

0.105
$$\pm$$
0.015 \pm 0.013 ADEVA 83B MRKJ $E_{\rm cm}^{ee}=$ 33–38.5 GeV 0.155 $_{-0.029}^{+0.054}$ FERNANDEZ 83D MAC $E_{\rm cm}^{ee}=$ 29 GeV

error. $^2\,\text{ACCIARRI}$ 96C result obtained by a fit to the single lepton spectrum.

$\Gamma(D^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{10}/Γ

(0)// LOLL!				=0/
VALUE	DOCUMENT ID	TECN	COMMENT	
0.022 ±0.004 OUR AVERAGE	Error includes scale fac	ctor of 1.	9.	
$0.0272 \pm 0.0028 \pm 0.0018$	¹ ABREU 00R	DLPH	$e^+e^- ightarrow~Z$	
$0.0194 \pm 0.0025 \pm 0.0003$	² AKERS 95Q	OPAL	$e^+e^- ightarrow Z$	

 $^{^1}$ ABREU 00R reports their experiment's uncertainties $\pm 0.0019 \pm 0.0016 \pm 0.0018$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the D branching fraction. We combine first two in quadrature.

² AKERS 95Q reports $[\Gamma(\overline{b} \to D^- \ell^+ \nu_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(D^+ \to K^- 2\pi^+)] = (1.82 \pm 0.20 \pm 0.12) \times 10^{-3}$ which we divide by our best value $B(D^+ \to K^- 2\pi^+) = (9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Γ($(D^-\pi^{\!\dashv}$	$^+\ell^+ u_\ell$	anything)/Г	total
----	----------------------	-------------------	----------	-----	-------

 Γ_{11}/Γ

VALUE	 DOCUMENT ID		TECN	COMMENT
$0.0049 \pm 0.0018 \pm 0.0007$	ABREU	00 R	DLPH	$e^+e^- ightarrow Z$

$\Gamma(D^-\pi^-\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{12}/Γ

VALUE	DOCUMENT ID	TECN	COMMENT
$0.0026 \pm 0.0015 \pm 0.0004$	ABREU 00R	DLPH	$e^+e^- ightarrow~Z$

$\Gamma(\overline{D}^0\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_{13}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT	
0.0679±0.0034 OUR AVERAGE					
$0.0704 \pm 0.0040 \pm 0.0017$	¹ ABREU	00 R	DLPH	$e^+e^- ightarrow Z$	
$0.0639 \pm 0.0056 \pm 0.0005$	² AKERS	95Q	OPAL	$e^+e^- ightarrow~Z$	

 $^{^1}$ ABREU 00R reports their experiment's uncertainties $\pm 0.0034 \pm 0.0036 \pm 0.0017$, where the first error is statistical, the second is systematic, and the third is the uncertainty due to the D branching fraction. We combine first two in quadrature.

¹ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \to b \, \overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

 $^{^3}$ Assumes Standard Model value for R_B .

⁴ ABREU 93C event count includes $\mu\mu$ events. Combining ee, $\mu\mu$, and $e\mu$ events, they obtain $0.100\pm0.007\pm0.007$.

ADEVA 91C measure the average B($b \rightarrow eX$) branching ratio using single and double tagged b enhanced Z events. Combining e and μ results, they obtain $0.113 \pm 0.010 \pm 0.006$. Constraining the initial number of b quarks by the Standard Model prediction (378 ± 3 MeV) for the decay of the Z into $b\bar{b}$, the muon result gives $0.123 \pm 0.003 \pm 0.006$. They obtain $0.119 \pm 0.003 \pm 0.006$ when e and μ results are combined. Used to measure the $b\bar{b}$ width itself, this muon result gives $394 \pm 9 \pm 22$ MeV and combined with the electron result gives $385 \pm 7 \pm 22$ MeV.

⁶ AKERS 93B analysis performed using single and dilepton events.

²AKERS 95Q reports $[\Gamma(\overline{b} \to \overline{D}^0 \ell^+ \nu_\ell \text{ anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^- \pi^+)] = (2.52 \pm 0.14 \pm 0.17) \times 10^{-3}$ which we divide by our best value $B(D^0 \to K^- \pi^+) = (3.946 \pm 0.030) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{D}{}^0\pi^-\ell^+\nu_\ell$ anything)/					Γ ₁₄ /Γ
<u>VALUE</u>	<u>DOCUMENT_ID</u>		TECN DI DI	COMMENT	
$0.0107 \pm 0.0025 \pm 0.0011$	ABREU	UUR	DLPH	$e^+e^- o Z$	
$\Gamma(\overline{D}{}^0\pi^+\ell^+ u_\ell$ anything)/	Γ _{total}				Γ ₁₅ /Γ
VALUE	<u>DOCUMENT ID</u>				
$0.0023 \pm 0.0015 \pm 0.0004$	ABREU	00 R	DLPH	$e^+e^- \rightarrow Z$	
$\Gamma(D^{*-}\ell^+\nu_\ell \text{ anything})/\Gamma_\ell$	t otal DOCUMENT ID		TECN	COMMENT	Γ ₁₆ /Γ
0.0275±0.0019 OUR AVERA					
$0.0275 \pm 0.0021 \pm 0.0009$	¹ ABREU			$e^+e^- \rightarrow Z$	
$0.0276 \pm 0.0027 \pm 0.0011$	² AKERS	95Q	OPAL	$e^+e^- \rightarrow Z$	•
¹ ABREU 00R reports their the first error is statistical to the D branching fractio ² AKERS 95Q reports [B(\overline{b}) = ((7.53 \pm 0.47 \pm 0.56) B($D^0 \rightarrow K^-\pi^+$) = 0.0 experiments error and the branching ratios.	, the second is systems on. We combine first to $D^*\ell^+\nu_\ell X) \times B(\ell^+\nu_\ell X) \times B(\ell^-\nu_\ell X)$ and uses $B(\ell^-\nu_\ell X) \pm 0.0014$ to obtain	atic, ar wo in o D*+ - D*+ - n the a	and the the quadration $D^0\pi^0$ π^0 above re	nird is the uncoure. $^{+}$) × B(D^{0} $^{-}$ $^{+}$) = 0.681 \pm sult. The first	ertainty due $\kappa^-\pi^+)] = 0.013$ and error is the
$\Gamma(D^{*-}\pi^-\ell^+\nu_\ell$ anything)					Γ ₁₇ /Γ
<u>VALUE</u>	<u>DOCUMENT ID</u>			$e^+e^- \rightarrow Z$,
$0.0006 \pm 0.0007 \pm 0.0002$	ABREU	UUR	DLPH	$e \cdot e \rightarrow Z$	
$\Gamma(D^{*-}\pi^+\ell^+\nu_\ell)$ anything					Γ ₁₈ /Γ
VALUE	DOCUMENT ID			<u>COMMENT</u>	-
$0.0048 \pm 0.0009 \pm 0.0005$	ABREU	00R	DLPH	$e^+e^- \rightarrow Z$	
$\Gamma(\overline{D}_i^0 \ell^+ \nu_\ell \text{ anything } \times B(\overline{D}_i^0 \ell^+$	$\overline{D}_i^0 o D^{*+}\pi^-))/\Gamma$	- total			Γ ₁₉ /Γ
D_i represents an unresc	•		and ter	sor D^{**} (P -w	ave) states.
VALUE (units 10^{-3})	DOCUMENT ID				
	ABBIENDI 0				
• • • We do not use the following					
$6.1 \pm 1.3 \pm 1.3$	AKERS 9	5Q OF	PAL R	epl. by ABBIE	NDI 03M
$\Gamma(D_j^-\ell^+ u_\ell$ anything $ imes$ B($(D_j^- o D^0 \pi^-))/\Gamma$	total			Γ ₂₀ /Γ
D_{j} represents an unreso	olved mixture of pseudo	oscalar	and ter	sor D^{**} (P -w	ave) states.
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
$7.0\pm1.9^{+1.2}_{-1.3}$	AKERS				
$\Gamma(\overline{D}_2^*(2460)^0\ell^+ u_\ell$ anythi	ng × B(<u>D</u> *(2460\0	رم حـ	*- <i>-</i> +1)/r	Γ ₂₁ /Γ
$\frac{VALUE \text{ (units } 10^{-3})}{<1.4}$ $\frac{CL\%}{90}$	DUCUMENT ID	0314	ODAL	a+a- 3	,
1.4 90	ADDIENDI	USIVI	UFAL	$e \cdot e \rightarrow Z$	

$\Gamma(D_2^*(2460)^-\ell^+ u_\ell$ anything \times B $(D_2^*(2460)^- o D^0\pi^-)$ / Γ_{total}				Γ_{22}/Γ	
$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
$4.2\pm1.3^{igoplus 0.7}_{-1.2}$	AKERS	95Q	OPAL	$e^+e^- o Z$	
$\Gamma(\overline{D}_2^*(2460)^0\ell^+ u_\ell$ anything $ imes$ B $(\overline{D}_2^*(2460)^0 o D^-\pi^+))/\Gamma_{ ext{total}}$					

VALUE (units 10^{-3})DOCUMENT IDTECNCOMMENT1.6±0.7±0.3AKERS95QOPAL $e^+e^- \rightarrow Z$

$\Gamma(\text{charmless }\ell\overline{\nu}_{\ell})/\Gamma_{\text{total}}$

 Γ_{24}/Γ

 Γ_{25}/Γ

Created: 6/1/2021 08:33

"OUR EVALUATION" is an average of the data listed below performed by the LEP Heavy Flavour Steering Group. The averaging procedure takes into account correlations between the measurements.

VALUE	DOCUMENT ID		TECN	COMMENT
0.00171±0.00052 OUR EVALUAT	ION			
0.0017 ± 0.0004 OUR AVERAGE	1			
$0.00163\!\pm\!0.00053\!+\!0.00055\\-0.00062$	¹ ABBIENDI	01 R	OPAL	$e^+e^- ightarrow Z$
$0.00157 \!\pm\! 0.00035 \!\pm\! 0.00055$	² ABREU	00 D	DLPH	$e^+e^- ightarrow Z$
$0.00173 \pm 0.00055 \pm 0.00055$	³ BARATE	99G	ALEP	$e^+e^- ightarrow Z$
$0.0033 \pm 0.0010 \pm 0.0017$	⁴ ACCIARRI	98K	L3	$e^+e^- ightarrow Z$

¹ Obtained from the best fit of the MC simulated events to the data based on the $b \to X_{II} \ell \nu$ neutral network output distributions.

$\Gamma(au^+ u_{ au}$ anything)/ $\Gamma_{ ext{total}}$

•	,				
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
2.41±0.23 OUR AV	/ERAGE				
$2.78\!\pm\!0.18\!\pm\!0.51$		$^{ m 1}$ ABBIENDI	•		$e^+e^- ightarrow Z$
$2.43\!\pm\!0.20\!\pm\!0.25$		² BARATE	01E	ALEP	$e^+e^- ightarrow Z$
$2.19\!\pm\!0.24\!\pm\!0.39$		³ ABREU	00 C	DLPH	$e^+e^- ightarrow Z$
$1.7\ \pm0.5\ \pm1.1$		^{4,5} ACCIARRI	96 C	L3	$e^+e^- ightarrow Z$
$2.4 \pm 0.7 \pm 0.8$	1032	⁶ ACCIARRI	94C	L3	$e^+e^- ightarrow Z$
• • • We do not us	se the following	g data for averages	s, fits,	limits, e	etc. • • •
$2.75\!\pm\!0.30\!\pm\!0.37$	405	⁷ BUSKULIC	95	ALEP	Repl. by BARATE 01E
$4.08\!\pm\!0.76\!\pm\!0.62$		BUSKULIC	93 B	ALEP	Repl. by BUSKULIC 95

¹ABBIENDI 01Q uses a missing energy technique.

² ABREU 00D result obtained from a fit to the numbers of decays in $b \to u$ enriched and depleted samples and their lepton spectra, and assuming $|V_{c\,b}| = 0.0384 \pm 0.0033$ and $\tau_b = 1.564 \pm 0.014$ ps.

³ Uses lifetime tagged $b\overline{b}$ sample.

 $^{^4}$ ACCIARRI 98K assumes $R_b = 0.2174 \pm 0.0009$ at Z decay.

² The energy-flow and *b*-tagging algorithms were used.

³ Uses the missing energy in $Z \rightarrow b\overline{b}$ decays without identifying leptons.

⁴ ACCIARRI 96C result obtained from missing energy spectrum.

 $^{^{5}}$ Assumes Standard Model value for R_{B} .

⁶ This is a direct result using tagged $b\overline{b}$ events at the Z, but species are not separated.

⁷ BUSKULIC 95 uses missing-energy technique.

$\Gamma(D^{*-} au u_{ au} any thing) / \Gamma_{total}$					Γ_{26}/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$(0.88\pm0.31\pm0.28)\times10^{-2}$	¹ BARATE	01E	ALEP	$e^+e^- o Z$	

 $^{^{1}}$ The energy-flow and b-tagging algorithms were used.

$\Gamma(\overline{b} \to \overline{c} \to \ell^- \overline{\nu}_{\ell} \text{ anything}) / \Gamma_{\text{total}}$

 Γ_{27}/Γ

"OUR EVALUATION" is an average of the data listed below, excluding all asymmetry measurements, performed by the LEP Electroweak Working Group as described in the "Note on the Z boson" in the Z Particle Listings.

VALUE	DOCUMENT ID		TECN	COMMENT		
0.0802±0.0019 OUR EVALUATION						
0.0817 ± 0.0020 OUR AVERAGE						
$0.0818 \!\pm\! 0.0015 \!+\! 0.0024 \\ -0.0026$	¹ HEISTER	02G	ALEP	$e^+e^- o Z$		
$0.0798 \!\pm\! 0.0022 \!+\! 0.0025 \\ -\! 0.0029$	² ABREU	01L	DLPH	$e^+e^- ightarrow Z$		
$0.0840 \pm 0.0016 ^{+0.0039}_{-0.0036}$	³ ABBIENDI	00E	OPAL	$e^+e^- ightarrow Z$		
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •		
$0.0770 \pm 0.0097 \pm 0.0046$	⁴ ABREU			$e^+e^- \rightarrow Z$		
$0.082\ \pm0.003\ \pm0.012$	⁵ BUSKULIC	94G	ALEP	$e^+e^- ightarrow Z$		
$0.077 \pm 0.004 \pm 0.007$	⁶ AKERS	93 B	OPAL	Repl. by ABBI- ENDI 00E		

¹ Uses the combination of lepton transverse momentum spectrum and the correlation between the charge of the lepton and opposite jet charge. The first error is statistic and the second error is the total systematic error including the modeling.

$\Gamma(c \to \ell^+ \nu \text{ anything}) / \Gamma_{\text{total}}$

 Γ_{28}/Γ

\ J \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.0161 \pm 0.0020 {+0.0034 \atop -0.0047}$	¹ ABREU 01L	DLPH	$e^+e^- ightarrow Z$	

¹ The experimental systematic and model uncertainties are combined in quadrature.

$\Gamma(\overline{\mathcal{D}}{}^0 \, \text{anything})/\Gamma_{\text{total}}$

 Γ_{29}/Γ

VALUE	<u>DOCUMENT ID</u>		IECN	COMMENT
$0.587 \pm 0.028 \pm 0.005$	$^{ m 1}$ BUSKULIC	96Y	ALEP	$e^+e^- ightarrow Z$

¹ BUSKULIC 96Y reports $0.605 \pm 0.024 \pm 0.016$ from a measurement of $[\Gamma(\overline{b} \to \overline{D}^0 \text{ anything})/\Gamma_{\text{total}}] \times [B(D^0 \to K^-\pi^+)]$ assuming $B(D^0 \to K^-\pi^+) = 0.0383$, which we rescale to our best value $B(D^0 \to K^-\pi^+) = (3.946 \pm 0.030) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^{2}\,\}mathsf{The}$ experimental systematic and model uncertainties are combined in quadrature.

³ ABBIENDI 00E result is determined by comparing the distribution of several kinematic variables of leptonic events in a lifetime tagged $Z \rightarrow b\overline{b}$ sample using artificial neural network techniques. The first error is statistic; the second error is the total systematic error.

⁴ ABREU 95D give systematic errors ± 0.0033 (model) and 0.0032 (R_c). We combine these in quadrature. This result is from the same global fit as their $\Gamma(\overline{b} \to \ell^+ \nu_\ell X)$ data.

data. 5 BUSKULIC 94G uses e and μ events. This value is from the same global fit as their $\Gamma(\overline{b} \to \ \ell^+ \nu_\ell \, {\rm anything})/\Gamma_{\rm total} \, \, {\rm data}.$

⁶ AKERS 93B analysis performed using single and dilepton events.

$\Gamma(D^0D_s^{\pm})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₃₀ /Γ
$0.091 + 0.020 + 0.034 \\ -0.018 - 0.022$	·			$e^+e^- \rightarrow Z$	
¹ The systematic error include	s the uncertainties o	due to	the cha	rm branching r	atios.
$\Gamma(D^{\mp}D_s^{\pm})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₃₁ /Γ
0.040 + 0.017 + 0.016	¹ BARATE				
¹ The systematic error include	s the uncertainties o	due to	the cha	rm branching r	atios.
$\left[\Gamma(D^0D_s^{\pm} \text{ anything}) + \Gamma(D^0)\right]$	$^{\mp}D_{s}^{\pm}$ anything)]	/Γ _{tota}	al	(Г ₃₀	+Γ ₃₁)/Γ
0.131 + 0.026 + 0.048 - 0.022 - 0.031	DOCUMENT ID BARATE				
$^{ m 1}$ The systematic error include	s the uncertainties o	due to	the cha	rm branching r	atios.
$\Gamma(\overline{D}^0 D^0 \text{ anything})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	COMMENT	Γ ₃₂ /Γ
0.051 + 0.016 + 0.012 -0.014 - 0.011	¹ BARATE				
¹ The systematic error include	s the uncertainties o	due to	the cha	rm branching r	atios.
$\Gamma(D^0D^{\pm} \text{ anything})/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	<u>COMMENT</u>	Γ ₃₃ /Γ
0.027 + 0.015 + 0.010 - 0.013 - 0.009	¹ BARATE			·	
¹ The systematic error include					atios.
$\Gamma(\overline{D}^0D^0$ anything) + $\Gamma(D^0$	_				+Γ ₃₃)/Γ
VALUE	DOCUMENT ID			COMMENT	33//
$0.078^{igoplus 0.020}_{igoplus 0.018}^{igoplus 0.018}_{igoplus 0.016}$	¹ BARATE	98Q	ALEP	$e^+e^- ightarrow Z$	
$^{ m 1}$ The systematic error include	s the uncertainties o	due to	the cha	rm branching r	atios.
$\Gamma(D^{\pm}D^{\mp} \text{ anything})/\Gamma_{\text{total}}$ VALUE $CL\%$	DOCUMENT ID		TECN	COMMENT	Γ ₃₄ /Γ
<u>VALUE</u> <u>CL%</u> <0.009 90	DOCUMENT ID BARATE	98Q	ALEP	$e^+e^- \rightarrow Z$	
$[\Gamma(D^0 \text{ anything}) + \Gamma(D^+ \text{ and})]$	$[ything]/\Gamma_{total}$			(Γ ₃₅	+Γ ₃₆)/Γ
VALUE			DI DII	+	
	DOCUMENT ID 1 ABDALLAH	03E	DLPH	$e \cdot e \rightarrow Z$	
		tainties	s includi	ng the branchin	g fractions Γ_{37}/Γ

https://pdg.lbl.gov

Page 16

¹ BUSKULIC 96Y reports 0.234 \pm 0.013 \pm 0.010 from a measurement of $[\Gamma(\overline{b} \to D^- \text{ anything})/\Gamma_{\text{total}}] \times [B(D^+ \to K^- 2\pi^+)]$ assuming $B(D^+ \to K^- 2\pi^+) = 0.091$, which we rescale to our best value $B(D^+ \to K^- 2\pi^+) = (9.38 \pm 0.16) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^*(2010)^+ \text{ anything})/\Gamma_{\text{total}}$ Γ_{38}/Γ 1 ACKERSTAFF 98E OPAL $e^{+}e^{-} \rightarrow Z$ $0.173 \pm 0.016 \pm 0.012$ ¹Uses lepton tags to select $Z \rightarrow b\overline{b}$ events. $\Gamma(D_1(2420)^0 \text{ anything})/\Gamma_{\text{total}}$ Γ_{39}/Γ VALUE DOCUMENT ID TECN COMMENT 1 ACKERSTAFF 97W OPAL $e^{+}e^{-} \rightarrow Z$ $0.050 \pm 0.014 \pm 0.006$ ¹ ACKERSTAFF 97W assumes $B(D_2^*(2460)^0 \rightarrow$ $D^{*+}\pi^{-}) = 0.21 \pm 0.04$ and $\Gamma_{b\overline{b}}/\Gamma_{hadrons}=0.216$ at Z decay. $\Gamma(D^*(2010)^{\mp}D_s^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{40}/Γ VALUE DOCUMENT ID TECN COMMENT $0.033^{\displaystyle{+0.010}}_{\displaystyle{-0.009}}^{\displaystyle{+0.012}}_{\displaystyle{-0.009}}^{\displaystyle{+0.012}}$ ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$ ¹ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^0D^*(2010)^{\pm} \text{ anything})/\Gamma_{\text{total}}$ Γ_{41}/Γ DOCUMENT ID TECN COMMENT $0.030^{+0.009}_{-0.008}^{+0.007}_{-0.005}$ ¹ BARATE 980 ALEP $e^+e^- \rightarrow Z$ $^{ m 1}$ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{\pm}D^{\mp} \text{ anything})/\Gamma_{\text{total}}$ <u>VALUE</u> TECN COMMENT $0.025 {}^{\displaystyle +0.010}_{\displaystyle -0.009} {}^{\displaystyle +0.006}_{\displaystyle -0.005}$ ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$ ¹ The systematic error includes the uncertainties due to the charm branching ratios. $\Gamma(D^*(2010)^{\pm}D^*(2010)^{\mp}$ anything)/ Γ_{total} Γ_{43}/Γ TECN COMMENT $0.012^{+0.004}_{-0.003}\pm0.002$ ¹ BARATE 98Q ALEP $e^+e^- \rightarrow Z$ ¹ The systematic error includes the uncertainties due to the charm branching ratios.

 Γ_{44}/Γ

TECN COMMENT

Created: 6/1/2021 08:33

04I OPAL $e^+e^- \rightarrow 7$

 $\Gamma(\overline{D}Danything)/\Gamma_{total}$

 $0.10\pm0.032^{+0.107}_{-0.095}$

VALUE

¹ ABBIENDI

 $^{^{1}}$ Measurement performed using an inclusive identification of B mesons and the D candidates.

$\Gamma(D_2^*(2460)^0 \text{ anything})/\Gamma_{\text{total}}$

DOCUMENT ID TECN COMMENT

 1 ACKERSTAFF 97W OPAL $e^{+}e^{-}
ightarrow Z$ $0.047 \pm 0.024 \pm 0.013$

$\Gamma(D_c^-)$ anything $\Gamma(D_c^-)$

 Γ_{46}/Γ

VALUE DOCUMENT ID TECH COMMENT	VALUE		ILCIV	COMMINICIALI	
	VALUE	DOCUMENT ID	TECN	COMMENT	

 $^{^{1}}$ BUSKULIC 96Y reports 0.183 \pm 0.019 \pm 0.009 from a measurement of [$\Gamma(\overline{b}
ightarrow$ D_s^- anything)/ $\Gamma_{ ext{total}}$] imes [B($D_s^+ o \phi \pi^+$)] assuming B($D_s^+ o \phi \pi^+$) = 0.036, which we rescale to our best value B($D_s^+ \to \phi \pi^+$) = (4.5 ± 0.4) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best

$\Gamma(D_s^+ \text{ anything})/\Gamma_{\text{total}}$

 $0.101 \pm 0.010 \pm 0.029$

$\Gamma(b \to \Lambda_c^+ \text{ anything})/\Gamma_{\text{total}}$

 Γ_{48}/Γ

 $0.077 \pm 0.011 \pm 0.004$

$\Gamma(\overline{c}/c \text{ anything})/\Gamma_{\text{total}}$

 Γ_{49}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT
1.162±0.032 OUR AVERAGE				
$1.12 \begin{array}{c} +0.11 \\ -0.10 \end{array}$	¹ ABBIENDI	041	OPAL	$e^+e^- \rightarrow Z$
$1.166 \pm 0.031 \pm 0.080$	² ABREU			$e^+e^- \rightarrow Z$
1.147 ± 0.041	³ ABREU	98 D	DLPH	$e^+e^- ightarrow Z$
$1.230 \pm 0.036 \pm 0.065$	⁴ BUSKULIC	96Y	ALEP	$e^+e^- ightarrow Z$

 $^{^{}m 1}$ Measurement performed using an inclusive identification of B mesons and the D candi-

 $^{^1}$ ACKERSTAFF 97W assumes B $(D_2^*(2460)^0 \rightarrow D^{*+}\pi^-) = 0.21 \pm 0.04$ and $\Gamma_{b\,\overline{b}}/\Gamma_{
m hadrons}=0.216$ at Z decay.

 $^{^{}m 1}$ The second error is the total of systematic uncertainties including the branching fractions used in the measurement.

 $^{^{1}}$ BUSKULIC 96Y reports 0.110 \pm 0.014 \pm 0.006 from a measurement of [Г(b ightarrow Λ_c^+ anything)/ Γ_{total}] \times [B($\Lambda_c^+ \to pK^-\pi^+$)] assuming B($\Lambda_c^+ \to pK^-\pi^+$) = 0.044, which we rescale to our best value B($\Lambda_c^+ \to pK^-\pi^+$) = (6.28 \pm 0.32) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Evaluated via summation of exclusive and inclusive channels.

 $^{^3}$ ABREU 98D results are extracted from a fit to the *b*-tagging probability distribution based on the impact parameter.

 $^{^4}$ BUSKULIC 96Y assumes PDG 96 production fractions for B^0 , B^+ , B_s , b baryons, and PDG 96 branching ratios for charm decays. This is sum of their inclusive \overline{D}^0 , D^- , \overline{D}_s , and $\Lambda_{\mathcal{C}}$ branching ratios, corrected to include inclusive $\Xi_{\mathcal{C}}$ and charmonium.

$\Gamma(J/\psi(1S))$ anything $\Gamma(J/\psi(1S))$

 Γ_{50}/Γ

VALUE (units 10^{-2})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
1.16±0.10 OUR AVE	RAGE				
$1.12\!\pm\!0.12\!\pm\!0.10$		¹ ABREU	94 P	DLPH	$e^+e^- ightarrow Z$
$1.16 \pm 0.16 \pm 0.14$	121			-	$e^+e^- ightarrow~Z$
$1.21\!\pm\!0.13\!\pm\!0.08$		BUSKULIC	92G	ALEP	$e^+e^- ightarrow Z$
• • • We do not use th	e following data f	for averages, fits, li	mits,	etc. ● ●	•
$1.3 \pm 0.2 \pm 0.2$		³ ADRIANI	92	L3	$e^+e^- ightarrow Z$
<4.9	90	MATTEUZZI	83	MRK2	$E_{cm}^{ee} = 29 \; GeV$

¹ ABREU 94P is an inclusive measurement from b decays at the Z. Uses $J/\psi(1S) \rightarrow e^+e^-$ and $\mu^+\mu^-$ channels. Assumes $\Gamma(Z \rightarrow b\,\overline{b})/\Gamma_{\rm hadron} = 0.22$.

$\Gamma(\psi(2S))$ anything $\Gamma(\psi(2S))$

 Γ_{51}/Γ

 VALUE
 DOCUMENT ID
 TECN
 COMMENT

 • • • We do not use the following data for averages, fits, limits, etc. • •

 $0.0048 \pm 0.0022 \pm 0.0010$

¹ ABREU

94P DLPH $e^+e^- \rightarrow Z$

$\Gamma(\psi(2S))$ anything $\Gamma(J/\psi(1S))$ anything

 Γ_{51}/Γ_{50}

VALUE	DOCUMENT ID	TECN	COMMENT
0.263 ± 0.013 OUR AVERAGE			
$0.265 \pm 0.002 \pm 0.016$	¹ AAIJ	20G LHCB	pp at 13 TeV
$0.266 \pm 0.06 \pm 0.03$	^{2,3} AAIJ		pp at 7 TeV
$0.257 \pm 0.015 \pm 0.019$	^{4,5} CHATRCHYAI	N 12AK CMS	pp at 7 TeV

¹ The first error is statistic; the second error is the total systematic error.

² ADRIANI 93J is an inclusive measurement from b decays at the Z. Uses $J/\psi(1S) \to \mu^+\mu^-$ and $J/\psi(1S) \to e^+e^-$ channels.

³ ADRIANI 92 measurement is an inclusive result for B($Z \rightarrow J/\psi(1S)$ X) = (4.1 ± 0.7 ± 0.3) × 10⁻³ which is used to extract the *b*-hadron contribution to $J/\psi(1S)$ production.

¹ ABREU 94P is an inclusive measurement from b decays at the Z. Uses $\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-$, $J/\psi(1S) \rightarrow \mu^+\mu^-$ channels. Assumes $\Gamma(Z \rightarrow b\overline{b})/\Gamma_{\rm hadron} = 0.22$.

² AAIJ 12BD reports B($b \rightarrow \psi(2S)X$) = (3.08 \pm 0.07 \pm 0.36 \pm 0.27) \times 10⁻³ and we divided our best value of B($b \rightarrow \psi(1S)X$) = (1.16 \pm 0.10) \times 10⁻² as the ratio listed here.

Assumes lepton universality imposing B($\psi(2s) \to \mu^+\mu^-$) = B($\psi(2s) \to e^+e^-$).

⁴ CHATRCHYAN 12AK really reports $\Gamma_{51}/\Gamma = (3.08 \pm 0.12 \pm 0.13 \pm 0.42) \times 10^{-3}$ assuming PDG 10 value of $\Gamma_{50}/\Gamma = (1.16 \pm 0.10) \times 10^{-2}$ which we present as a ratio of $\Gamma_{51}/\Gamma_{50} = (26.5 \pm 1.0 \pm 1.1 \pm 2.8) \times 10^{-2}$.

⁵ CHATRCHYAN 12AK reports $(26.5 \pm 1.0 \pm 1.1 \pm 2.8) \times 10^{-2}$ from a measurement of $[\Gamma(\overline{b} \to \psi(2S) \text{ anything})/\Gamma(\overline{b} \to J/\psi(1S) \text{ anything})] \times [B(\psi(2S) \to \mu^+\mu^-)]$ / $[B(J/\psi(1S) \to \mu^+\mu^-)]$ assuming $B(\psi(2S) \to \mu^+\mu^-) = (7.7 \pm 0.8) \times 10^{-3}$, $B(J/\psi(1S) \to \mu^+\mu^-) = (5.93 \pm 0.06) \times 10^{-2}$, which we rescale to our best values $B(\psi(2S) \to \mu^+\mu^-) = (8.0 \pm 0.6) \times 10^{-3}$, $B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c0}(1P))$ anything $\Gamma(\eta_{c}(1S))$ anything

the systematic error from using our best values.

 Γ_{52}/Γ_{56}

0.32±0.06±0.05	¹ AAIJ	17BB LHCB	pp at 7, 8 TeV
1 AAIJ 17BB reports $[\Gamma(\overline{b} ightarrow \phi)] imes [B(\chi_{c0}(1P) ightarrow \phi)$	$\chi_{c0}(1P)$ anything	$)/\Gamma(\overline{b} ightarrow~\eta_{m{C}}(1S)$ a	anything)] / [B($\eta_{m{c}}(1S)$ $ ightarrow$
our best values $B(\eta_{\mathcal{C}}(1S)$			
$(8.0 \pm 0.7) \times 10^{-4}$. Our	first error is their	experiment's erro	or and our second error is

TECN

COMMENT

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\chi_{c1}(1P))$

 0.014 ± 0.004 OUR AVERAGE

VALUE

 Γ_{53}/Γ

$0.0112^{+0.0057}_{-0.0050} \pm 0.0003$		¹ ABREU	94 P	DLPH	$e^+e^- ightarrow Z$
$0.019 \pm 0.007 \pm 0.001$	19	² ADRIANI	93 J	L3	$e^+e^-\to~Z$

 $^1\, {\sf ABREU}$ 94P reports 0.014 \pm 0.006 $^{+\, 0.004}_{-\, 0.002}$ from a measurement of $[\Gamma(\overline{b}$ \rightarrow $\chi_{c1}(1P)$ anything)/ Γ_{total}] \times [B($\chi_{c1}(1P) \rightarrow \gamma J/\psi(1S)$)] assuming B($\chi_{c1}(1P) \rightarrow \gamma J/\psi(1S)$) = 0.273 \pm 0.016, which we rescale to our best value B($\chi_{c1}(1P) \rightarrow \gamma J/\psi(1S)$) $\gamma J/\psi(1S)$) = (34.3 \pm 1.0) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes no $\chi_{c2}(1P)$ and $\Gamma(Z \rightarrow b\overline{b})/\Gamma_{hadron} = 0.22$.

 2 ADRIANI 93J reports 0.024 \pm 0.009 \pm 0.002 from a measurement of [$\Gamma(\overline{b} \rightarrow$ $\chi_{c1}(1P)\, {\rm anything})/\Gamma_{\rm total}] \times [{\rm B}(\chi_{c1}(1P)\to \gamma J/\psi(1S))]$ assuming ${\rm B}(\chi_{c1}(1P)\to \gamma J/\psi(1S))=0.273\pm0.016,$ which we rescale to our best value ${\rm B}(\chi_{c1}(1P)\to \gamma J/\psi(1S))=0.273\pm0.016$ $\gamma J/\psi(1S)$) = (34.3 \pm 1.0) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(J/\psi(1S))$ anything

 Γ_{53}/Γ_{50}

DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • •

 1.92 ± 0.82

¹ ADRIANI 121

93J L3

 $^{
m 1}$ ADRIANI 93J is a ratio of inclusive measurements from b decays at the Z using only the $J/\psi(1S) \rightarrow \mu^{+}\mu^{-}$ channel since some systematics cancel.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\chi_{c0}(1P))$ anything

 Γ_{53}/Γ_{52}

VALUE	 	DOCUMENT ID	TECN	COMMENT
$0.96 \pm 0.21 \pm 0.15$		¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV

 1 AAIJ 17BB reports $[\Gamma(\overline{b}\to\chi_{c1}(1P)\,\text{anything})/\Gamma(\overline{b}\to\chi_{c0}(1P)\,\text{anything})]/[B(\chi_{c0}(1P)\to\phi\phi)]\times[B(\chi_{c1}(1P)\to\phi\phi)]=0.50\pm0.11\pm0.01$ which we multiply or divide by our best values B($\chi_{c0}(1P) \rightarrow \phi \phi$) = (8.0 ± 0.7) × 10⁻⁴, B($\chi_{c1}(1P) \rightarrow \phi \phi$) $\phi\phi$) = $(4.2 \pm 0.5) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c1}(1P))$ anything $\Gamma(\eta_{c}(1S))$ anything

 Γ_{53}/Γ_{56}

<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
0.31±0.07±0.05	¹ AAIJ	17BB LHCB	<i>pp</i> at 7, 8 TeV

 $^{^1}$ AAIJ 17BB reports [$\Gamma(\overline{b} \to \chi_{\mathcal{C}1}(1P) \, \text{anything}) / \Gamma(\overline{b} \to \eta_{\mathcal{C}}(1S) \, \text{anything})] / \left[\mathsf{B}(\eta_{\mathcal{C}}(1S) \to \phi \phi) \right] \times \left[\mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) \right] = 0.073 \pm 0.016 \pm 0.006 \, \text{which we multiply or divide by our best values } \mathsf{B}(\eta_{\mathcal{C}}(1S) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}, \, \mathsf{B}(\chi_{\mathcal{C}1}(1P) \to \phi \phi)$ $(4.2 \pm 0.5) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

$\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\chi_{c0}(1P))$ anything Γ_{54}/Γ_{52} **VALUE** $0.42\pm0.08\pm0.05$ 17BB LHCB pp at 7, 8 TeV 1 AAIJ $\,$ 17BB $\,$ reports $\,[\Gamma(\overline{b}\to\chi_{c2}(1P)\,{\rm anything})/\Gamma(\overline{b}\to\chi_{c0}(1P)\,{\rm anything})] / \,[{\rm B}(\chi_{c0}(1P)\to\phi\phi)] \times [{\rm B}(\chi_{c2}(1P)\to\phi\phi)] = 0.56\pm0.10\pm0.01$ which we multiply or divide by our best values B($\chi_{c0}(1P) \rightarrow \phi \phi$) = (8.0 ± 0.7) × 10⁻⁴, B($\chi_{c2}(1P) \rightarrow$ $\phi\phi)=(1.06\pm0.09) imes10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. $\Gamma(\chi_{c2}(1P))$ anything $\Gamma(\eta_{c}(1S))$ anything Γ_{54}/Γ_{56} TECN COMMENT $0.133 \pm 0.023 \pm 0.018$ 17BB LHCB pp at 7, 8 TeV 1 AAIJ 17BB reports $[\Gamma(\overline{b}\to\chi_{\mathcal{C}2}(1P)\,\text{anything})/\Gamma(\overline{b}\to\eta_{\mathcal{C}}(1S)\,\text{anything})]~/~[B(\eta_{\mathcal{C}}(1S)\to\phi\phi)]~\times~[B(\chi_{\mathcal{C}2}(1P)\to\phi\phi)]=0.081\pm0.013\pm0.005$ which we multiply or divide by our best values B($\eta_{c}(1S) \rightarrow \phi \phi$) = (1.74 \pm 0.19) \times 10⁻³, B($\chi_{c2}(1P) \rightarrow \phi \phi$) = $(1.06 \pm 0.09) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values. $\Gamma(\chi_c(2P))$ anything, $\chi_c \to \phi \phi / \Gamma_{total}$ Γ_{55}/Γ AAIJ 17BB LHCB pp at 7, 8 TeV $\Gamma(\eta_c(1S))$ anything $\Gamma(J/\psi(1S))$ anything Γ_{56}/Γ_{50} $0.48 \pm 0.03 \pm 0.06$ 20H LHCB pp at 13 TeV $\Gamma(\eta_c(2S))$ anything, $\eta_c \to \phi \phi / \Gamma(\eta_c(1S))$ anything Γ_{57}/Γ_{56} VALUE (units 10^{-5}) $7.0\pm 2.0\pm 0.8$ 17BB LHCB pp at 7, 8 TeV 1 AAIJ 17BB reports $[\Gamma(\overline{b}\to\eta_{\it c}(2S) \, {\rm anything}, \,\,\eta_{\it c}\to\phi\phi)/\Gamma(\overline{b}\to\eta_{\it c}(1S) \, {\rm anything})]$ / $[B(\eta_{\it c}(1S)\to\phi\phi)]=0.040\pm0.011\pm0.004$ which we multiply by our best value $B(\eta_c(1S) \to \phi \phi) = (1.74 \pm 0.19) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\chi_{c1}(3872))$ anything, $\chi_{c1} \rightarrow \phi \phi)/\Gamma_{total}$ Γ_{58}/Γ $<4.5 \times 10^{-7}$ 95 AAIJ 17BB LHCB pp at 7, 8 TeV $\Gamma(X(3915))$ anything, $X \to \phi \phi / \Gamma_{\text{total}}$ Γ_{59}/Γ <u>VA</u>LUE CL% DOCUMENT ID <u>TECN</u> <u>COMM</u>ENT $< 3.1 \times 10^{-7}$ 95 AAIJ 17BB LHCB pp at 7, 8 TeV $\Gamma(\overline{s}\gamma)/\Gamma_{\text{total}}$ Γ_{60}/Γ VALUE (units 10^{-4}) **TECN** $3.11 \pm 0.80 \pm 0.72$ ¹ BARATE 981 ALEP e+e • • We do not use the following data for averages, fits, limits, etc. ² ADAM 96D DLPH 90 < 5.4 ³ ADRIANI <12 90 93L L3 Created: 6/1/2021 08:33

 Γ_{61}/Γ

 Γ_{62}/Γ

 Γ_{63}/Γ

 Γ_{64}/Γ

 Γ_{65}/Γ

Created: 6/1/2021 08:33

 $^{^1}$ ADAM 96 measurement obtained from a fit to the rapidity distribution of $\pi^{0's}$ in Z
ightharpoonup

$\Gamma(\phi \text{ anything})/\Gamma_{\text{total}}$					Г ₆₆ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.0282 \pm 0.0013 \pm 0.0019$	ABBIENDI	00Z	OPAL	$e^+e^- ightarrow Z$	
$\Gamma(p/\overline{p}anything)/\Gamma_{total}$					Γ ₆₇ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.131 ± 0.011 OUR AVERAGE					
$0.131 \pm 0.004 \pm 0.011$	BARATE	98V	ALEP	$e^+e^- ightarrow Z$	
$0.141 \pm 0.018 \pm 0.056$	ABREU	95 C	DLPH	$e^+e^- \rightarrow Z$	
$\Gamma(\Lambda/\overline{\Lambda}anything)/\Gamma_{total}$					Γ ₆₈ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.059 ±0.006 OUR AVERAGE					
$0.0587 \pm 0.0046 \pm 0.0048$	ACKERSTAFF	97N	OPAL	$e^+e^- ightarrow Z$	
$0.059\ \pm0.007\ \pm0.009$	ABREU	95 C	DLPH	$e^+e^- o Z$	
$\Gamma(b$ -baryon anything)/ Γ_{total}					Γ ₆₉ /Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.102 \pm 0.007 \pm 0.027$	BARATE	98V	ALEP	$e^+e^- ightarrow Z$	
1 BARATE 98V assumes B($B_s ightarrow$	$pX) = 8 \pm 4\%$	and	B(<i>b</i> -bar	$yon \rightarrow pX) =$	$58\pm6\%$.

https://pdg.lbl.gov

Page 22

¹BARATE 981 uses lifetime tagged $Z \rightarrow b\overline{b}$ sample. $^2\,\mathrm{ADAM}$ 96D assumes $f_{B^0}=f_{B^-}=0.39$ and $f_{B_{\mathrm{S}}}=0.12.$ ³ ADRIANI 93L result is for $\overline{b} \to \overline{s} \gamma$ is performed inclusively. $\Gamma(\overline{s}\overline{\nu}\nu)/\Gamma_{\text{total}}$ 90 ALEP 1 The energy-flow and b-tagging algorithms were used. $\Gamma(K^{\pm} \text{ anything})/\Gamma_{\text{total}}$ 0.74±0.06 OUR AVERAGE $0.72 \pm 0.02 \pm 0.06$ **BARATE** 98V ALEP $e^+e^- \rightarrow Z$ 95C DLPH $e^+e^- \rightarrow Z$ $0.88 \pm 0.05 \pm 0.18$ **ABREU** $\Gamma(K_S^0 \text{ anything})/\Gamma_{\text{total}}$ TECN COMMENT $0.290 \pm 0.011 \pm 0.027$ 95C DLPH $e^+e^- \rightarrow Z$ **ABREU** $\Gamma(\pi^{\pm} \text{ anything})/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT 98V ALEP $e^+e^-
ightarrow Z$ $3.97 \pm 0.02 \pm 0.21$ $\Gamma(\pi^0 \text{ anything})/\Gamma_{\text{total}}$ TECN COMMENT 96 DLPH $e^+e^- \rightarrow Z$ $2.78\pm0.15\pm0.60$ bb events. ... \/=

$\Gamma(\Xi_b^+ \text{ anything})/\Gamma(\overline{\Lambda}_b^0 \text{ anything})$ VALUE (units 10⁻²)

 Γ_{71}/Γ_{70}

COMMENT

7.3±1.7 OUR AVERAGE			
$6.7\!\pm\!0.5\!\pm\!2.1$	¹ AAIJ	19AB LHCB	pp at 7 and 8 TeV
$8.2 \pm 0.7 \pm 2.6$	1 AAIJ	19AB LHCB	pp at 13 TeV

 $^{^{1}}$ Measured from R = [B(\$\overline{b}\$ $\to \Xi_{b}^{+}$) \times B(\Xi_{b}^{-} \to J/\psi\,\Xi^{+}$)]/[B($\overline{b}$ \to $\overline{\Lambda}_{b}^{0}$) \times B($\overline{\Lambda}_{b}^{0}$ \to <math display="inline">J/\psi\,\overline{\Lambda}^{0}$)]$ and assumes $\Gamma_{\Xi_{b}^{+}} \to J/\psi\,\Xi^{+}/\Gamma_{\overline{\Lambda}_{b}^{0}} \to J/\psi\,\overline{\Lambda}^{0}=3/2$ related through SU(3) flavor symmetry.

$\Gamma(\text{charged anything})/\Gamma_{\text{total}}$

 Γ_{72}/Γ

,						
<u>VALUE</u>	DOCUMENT ID)	TECN	COMMENT		
$4.97 \pm 0.03 \pm 0.06$	¹ ABREU	98н	DLPH	$e^+e^- ightarrow Z$		
• • • We do not use the follow	ing data for averag	es, fits,	limits, e	etc. • • •		
$5.84 \pm 0.04 \pm 0.38$	ABREU	95 C	DLPH	Repl. by ABREU 98H		
1 ABREU 98H measurement excludes the contribution from K^0 and Λ decay.						

$\Gamma(\text{hadron}^+ \text{ hadron}^-)/\Gamma_{\text{total}}$

 Γ_{73}/Γ

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT	
$1.7^{+1.0}_{-0.7}\pm0.2$	1,2 BUSKULIC	96∨	ALEP	$e^+e^- \rightarrow Z$

 $^{^{1}}$ BUSKULIC 96V assumes PDG 96 production fractions for B^{0} , B^{+} , B_{s} , b baryons.

$\Gamma(\text{charmless})/\Gamma_{\text{total}}$

 Γ_{74}/Γ

VALUE	DOCUMENT ID		TECN	COMMENT
0.007±0.021	¹ ABREU	98 D	DLPH	$e^+e^- \rightarrow Z$

 $^{^1}$ ABREU 98D results are extracted from a fit to the b-tagging probability distribution based on the impact parameter. The expected hidden charm contribution of 0.026 \pm 0.004 has been subtracted.

$\Gamma(\mu^+\mu^-\text{ anything})/\Gamma_{\text{total}}$

 Γ_{76}/Γ

l est	tor	$\Delta B =$	1	weak	neutral	current.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<3.2 × 10 ⁻⁴	90	ABBOTT	98 B	D0	<i>p</i> p 1.8 TeV
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •
$< 5.0 \times 10^{-5}$	90	¹ ALBAJAR	91 C	UA1	$E_{\rm cm}^{p\overline{p}} = 630 \; {\rm GeV}$
< 0.02	95	ALTHOFF	84G	TASS	<i>E</i> ^{ee} _{cm} = 34.5 GeV
< 0.007	95	ADEVA	83	MRKJ	<i>E</i> ^{ee} _{cm} = 30−38 GeV
< 0.007	95	BARTEL	83 B	JADE	$E_{cm}^{ee} = 33-37 \text{ GeV}$

¹ Both ABBOTT 98B and GLENN 98 claim that the efficiency quoted in ALBAJAR 91C was overestimated by a large factor.

$[\Gamma(e^+e^-\text{ anything}) + \Gamma(\mu^+\mu^-\text{ anything})]/\Gamma_{\text{total}}$

 $(\Gamma_{75}+\Gamma_{76})/\Gamma$

Test for $\Delta B = 1$ v	veak neutra	l current.	
VALUE	CL%	DOCUMENT ID	TECN COMMENT
• • • We do not use the	e following o	data for averages, fit	ts, limits, etc. • • •
< 0.008	90	MATTEUZZI 83	MRK2 E_{cm}^{ee} = 29 GeV
https://pdg.lbl.gov		Page 23	Created: 6/1/2021 08:33

² Average branching fraction of weakly decaying *B* hadrons into two long-lived charged hadrons, weighted by their production cross section and lifetimes.

$\Gamma(\nu \overline{\nu} \text{ anything})/\Gamma_{\text{total}}$

 Γ_{77}/Γ

DOCUMENT ID TECN COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • •

 $< 3.9 \times 10^{-4}$ ¹ GROSSMAN 96 RVUE $e^+e^- \rightarrow Z$

 1 GROSSMAN 96 limit is derived from the ALEPH BUSKULIC 95 limit B($B^{+}
ightarrow ~ au^{+}
u_{ au}$) < 1.8 \times 10 $^{-3}$ at CL=90% using conservative simplifying assumptions

χ_b AT HIGH ENERGY

For a discussion of $B - \overline{B}$ mixing, see the note on " $B^0 - \overline{B}^0$ Mixing" in the B^0 Particle Listings.

 χ_b is the average B- \overline{B} mixing parameter at high-energy χ_b = $f_d'\chi_d$ + $f_s'\chi_s$ where f_d' and f_s' are the fractions of B^0 and B_s^0 hadrons in an unbiased sample of semileptonic b-hadron decays.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at https://hflav.web.cern.ch/. The averaging/rescaling procedure takes into account correlations between the measurements.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.1284±0.0069 OUR EV		N			
0.129 ±0.004 OUR AV	ERAGE	1 4 D 4 7 O 1 /	066	Do	1 0C T V
$0.132 \pm 0.001 \pm 0.024$		¹ ABAZOV ² ACOSTA	06S 04A	D0 CDF	$p\overline{p}$ at 1.96 TeV
$0.152 \pm 0.007 \pm 0.011$		³ ABBIENDI	_	OPAL	$p\overline{p}$ at 1.8 TeV $e^+e^- o Z$
$0.1312 \pm 0.0049 \pm 0.0042$		⁴ ABREU	03P		
$0.127 \pm 0.013 \pm 0.006$			01L	DLPH	$e^+e^- \rightarrow Z$
$0.1192 \pm 0.0068 \pm 0.0051$		⁵ ACCIARRI	99D	L3	$e^+e^- \rightarrow Z$
$0.121 \pm 0.016 \pm 0.006$		⁶ ABREU	94J	DLPH	$e^+e^- \rightarrow Z$
$0.114 \pm 0.014 \pm 0.008$		⁷ BUSKULIC	94G	ALEP	$e^+e^- ightarrow Z$
0.129 ± 0.022		⁸ BUSKULIC	92 B	ALEP	$e^+e^- \rightarrow Z$
$0.176 \pm 0.031 \pm 0.032$	1112	⁹ ABE	91 G	CDF	<i>p</i>
$0.148 \pm 0.029 \pm 0.017$		¹⁰ ALBAJAR	91 D	UA1	<i>p</i> p 630 GeV
• • • We do not use the	following	data for averages,	fits, li	mits, etc	C. • • •
$0.131 \pm 0.020 \pm 0.016$		¹¹ ABE	971	CDF	Repl. by
$0.1107 \pm 0.0062 \pm 0.0055$		¹² ALEXANDER	96	OPAL	ACOSTA 04A Rep. by ABBI- ENDI 03P
$0.136 \ \pm 0.037 \ \pm 0.040$		¹³ UENO	96	AMY	e^+e^- at 57.9 GeV
$0.144 \ \pm 0.014 \ ^{+0.017}_{-0.011}$		¹⁴ ABREU	94F	DLPH	Sup. by ABREU 94J
0.131 ± 0.014		¹⁵ ABREU	94 J	DLPH	$e^+e^- ightarrow~Z$
$0.123\ \pm0.012\ \pm0.008$		ACCIARRI	94 D	L3	Repl. by ACCIA-
$0.157\ \pm0.020\ \pm0.032$		¹⁶ ALBAJAR	94	UA1	RRI 99D $\sqrt{s} = 630 \text{ GeV}$
$0.121 \ ^{+0.044}_{-0.040} \ \pm 0.017$	1665	¹⁷ ABREU	93 C	DLPH	Sup. by ABREU 94J
$0.143 \ ^{+0.022}_{-0.021} \ \pm 0.007$		¹⁸ AKERS	93 B	OPAL	Sup. by ALEXAN- DER 96
https://pdg.lbl.gov		Page 24		Creat	ed: 6/1/2021 08:33

$0.145 \begin{array}{l} +0.041 \\ -0.035 \end{array} \pm 0.018$	19 ACTON	92C OPAL $e^+e^- o Z$
$0.121 \pm 0.017 \pm 0.006$	²⁰ ADEVA	92C L3 Sup. by ACCIA- RRI 94D
$\begin{array}{ccc} 0.132 & \pm 0.22 & +0.015 \\ -0.012 & \end{array}$	823 ²¹ DECAMP	91 ALEP $e^+e^- o Z$
$0.178 \ ^{+ 0.049}_{- 0.040} \ \pm 0.020$	²² ADEVA	90P L3 $e^+e^- \rightarrow Z$
$0.17 {}^{+ 0.15}_{- 0.08}$	^{23,24} WEIR	90 MRK2 e ⁺ e ⁻ 29 GeV
$0.21 \begin{array}{c} +0.29 \\ -0.15 \end{array}$	²³ BAND	88 MAC E_{cm}^{ee} = 29 GeV
>0.02 at 90% <i>CL</i>	²³ BAND	88 MAC E_{cm}^{ee} = 29 GeV
$0.121\ \pm0.047$	^{23,25} ALBAJAR	87C UA1 Repl. by ALBA-
$<$ 0.12 at 90% $\it CL$	^{23,26} SCHAAD	JAR 91D 85 MRK2 <i>E^{ee}</i> _{cm} = 29 GeV

¹ Uses the dimuon charge asymmetry. Averaged over the mix of *b*-flavored hadrons.

² Measurement performed using events containing a dimuon or an e/μ pair.

 $^{^3}$ The average B mixing parameter is determined simultaneously with b and c forward-backward asymmetries in the fit.

⁴ The experimental systematic and model uncertainties are combined in quadrature.

⁵ ACCIARRI 99D uses maximum-likelihood fits to extract χ_b as well as the A_{FB}^b in $Z \to b\overline{b}$ events containing prompt leptons.

 $^{^6}$ This ABREU 94J result is from 5182 $\ell\ell$ and 279 $\Lambda\ell$ events. The systematic error includes 0.004 for model dependence.

⁷ BUSKULIC 94G data analyzed using ee, $e\mu$, and $\mu\mu$ events.

⁸ BUSKULIC 92B uses a jet charge technique combined with electrons and muons.

 $^{^{9}\,\}mathrm{ABE}$ 91G measurement of χ is done with $e\,\mu$ and $e\,e$ events.

 $^{^{10}}$ ALBAJAR 91D measurement of χ is done with dimuons.

¹¹ Uses di-muon events.

¹² ALEXANDER 96 uses a maximum likelihood fit to simultaneously extract χ as well as the forward-backward asymmetries in $e^+e^- \rightarrow Z \rightarrow b\overline{b}$ and $c\overline{c}$.

 $^{^{13}\,\}mathrm{UENO}$ 96 extracted χ from the energy dependence of the forward-backward asymmetry.

¹⁴ ABREU 94F uses the average electric charge sum of the jets recoiling against a b-quark jet tagged by a high p_T muon. The result is for $\overline{\chi} = f_d \chi_d + 0.9 f_s \chi_s$.

¹⁵ This ABREU 94J result combines $\ell\ell$, $\Lambda\ell$, and jet-charge ℓ (ABREU 94F) analyses. It is for $\overline{\chi}=f_{d}\chi_{d}+0.96f_{s}\chi_{s}$.

¹⁶ ALBAJAR 94 uses dimuon events. Not independent of ALBAJAR 91D.

¹⁷ ABREU 93C data analyzed using ee, $e\mu$, and $\mu\mu$ events.

¹⁸ AKERS 93B analysis performed using dilepton events.

¹⁹ ACTON 92C uses electrons and muons. Superseded by AKERS 93B.

²⁰ ADEVA 92C uses electrons and muons.

²¹ DECAMP 91 done with opposite and like-sign dileptons. Superseded by BUSKULIC 92B.

 $^{^{22}}$ ADEVA 90P measurement uses $e\,e,~\mu\,\mu,$ and $e\,\mu$ events from 118k events at the Z. Superseded by ADEVA 92C.

²³ These experiments are not in the average because the combination of B_s and B_d mesons which they see could differ from those at higher energy.

²⁴ The WEIR 90 measurement supersedes the limit obtained in SCHAAD 85. The 90% CL are 0.06 and 0.38.

are 0.06 and 0.38. ²⁵ ALBAJAR 87C measured $\chi = (\overline{B}^0 \to B^0 \to \mu^+ X)$ divided by the average production weighted semileptonic branching fraction for B hadrons at 546 and 630 GeV.

 $^{^{26}}$ Limit is average probability for hadron containing B quark to produce a positive lepton.

CP VIOLATION PARAMETERS in semileptonic b-hadron decays.

$\operatorname{Re}(\epsilon_b) / (1 + |\epsilon_b|^2)$

CP impurity in semileptonic b-hadron decays.

B-HADRON PRODUCTION FRACTIONS IN pp COLLISIONS AT Tevatron

The production fractions for *b*-hadrons in $p\overline{p}$ collisions at the Tevatron have been calculated from the best values of mean lifetimes, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) (see https://hflav.web.cern.ch/).

The values reported below assume:

The values reported below assume:
$$f(\overline{b} \to B^+) = f(\overline{b} \to B^0)$$

$$f(\overline{b} \to B^+) + f(\overline{b} \to B^0) + f(\overline{b} \to B_s^0) + f(b \to b\text{-baryon}) = 1$$
The values are:
$$f(\overline{b} \to B^+) = f(\overline{b} \to B^0) = 0.344 \pm 0.021$$

$$f(\overline{b} \to B_s^0) = 0.115 \pm 0.013$$

$$f(b \to b\text{-baryon}) = 0.198 \pm 0.046$$

$$f(\overline{b} \to B_s^0) / f(\overline{b} \to B_d^0) = 0.334 \pm 0.041$$
and their correlation coefficients are:
$$cor(B_s^0, b\text{-baryon}) = -0.429$$

$$cor(B_s^0, B^+ = B^0) = +0.159$$

cor(b-baryon, $B^+=B^0)=-0.960$

as obtained with the Tevatron average of time-integrated mixing parameter $\overline{\chi}=0.147\pm0.011.$

PRODUCTION ASYMMETRIES

$$\begin{split} \mathsf{A}_C^{b\overline{b}} &= \left[\mathsf{N}(\Delta \mathsf{y} > 0) - \mathsf{N}(\Delta \mathsf{y} < 0)\right] / \left[\mathsf{N}(\Delta \mathsf{y} > 0) + \mathsf{N}(\Delta \mathsf{y} < 0)\right] \text{ with } \Delta \mathsf{y} = \left|\mathsf{y}_b\right| - \left|\mathsf{y}_{\overline{b}}\right| \\ \text{where } \mathsf{y}_{b/\overline{b}} \text{ is rapidity of } b \text{ or } \overline{b} \text{ quarks}. \end{split}$$

$VALUE$ (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
Average is meaningless.			
$0.4 \pm 0.4 \pm 0.3$	¹ AAIJ	14AS LHCB	pp at 7 TeV
$2.0 \pm 0.9 \pm 0.6$	² AAIJ	14AS LHCB	pp at 7 TeV
$1.6 \pm 1.7 \pm 0.6$	³ AAIJ	14AS LHCB	pp at 7 TeV
¹ Measured for $40 < M(b\overline{b})$	$< 75 \text{ GeV/c}^2$		

$B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE REFERENCES

AAIJ	20G	EPJ C80 185	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	20H	EPJ C80 191	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	20V	PRL 124 122002	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	19AB	PR D99 052006	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	19AD	PR D100 031102	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	19AI	PR D100 112006	R. Aaij <i>et al.</i>	(LHCb Collab.)
AABOUD	17E	JHEP 1702 071	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAIJ		EPJ C77 609	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAD		PRL 115 262001	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAIJ		PRL 113 082003	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABAZOV	14	PR D89 012002	V.M. Abazov <i>et al.</i>	(D0 Collab.)
AAIJ	13P	JHEP 1304 001	R. Aaij <i>et al</i> .	(LHCb Collab.)
AAIJ	12BD	EPJ C72 2100	R. Aaij <i>et al.</i>	(LHCb Collab.)
Also		EPJ C80 49 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12J	PR D85 032008	R. Aaji <i>et al.</i>	(LHCb Collab.)
		JHEP 1202 011	S. Chatrchyan et al.	(CMS Collab.)
AAIJ	11F	PRL 107 211801	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABAZOV	11U	PR D84 052007	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	10H	PRL 105 081801	V.M. Abazov et al.	(D0 Collab.)
Also	10	PR D82 032001	V.M. Abazov et al.	(D0 Collab.)
PDG	10	JP G37 075021	K. Nakamura <i>et al.</i>	(PDG Collab.)
AALTONEN	09E	PR D79 032001	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	08N	PR D77 072003	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	06S 04I	PR D74 092001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABBIENDI	-	EPJ C35 149	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	04E 04A	EPJ C33 307	J. Abdallah <i>et al.</i> D. Acosta <i>et al.</i>	(DELPHI Collab.)
ACOSTA	-	PR D69 012002	G. Abbiendi <i>et al.</i>	(CDF Collab.)
ABBIENDI ABBIENDI	03M 03P	EPJ C30 467 PL B577 18	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABDALLAH	03E	PL B561 26	J. Abdallah <i>et al.</i>	(OPAL Collab.) (DELPHI Collab.)
ABDALLAH	03K	PL B501 20 PL B576 29	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
HEISTER	02G	EPJ C22 613	A. Heister <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	01Q	PL B520 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	01Q 01R	EPJ C21 399	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	01L	EPJ C20 455	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BARATE	01E	EPJ C19 213	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABBIENDI	00E	EPJ C13 225	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI	00Z	PL B492 13	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	00	EPJ C12 225	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00C	PL B496 43	P. Abreu <i>et al</i> .	(DELPHI Collab.)
ABREU	00D	PL B478 14	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	00R	PL B475 407	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	00	EPJ C13 47	M. Acciarri <i>et al.</i>	(L3 Collab.)
AFFOLDER	00E	PRL 84 1663	T. Affolder <i>et al.</i>	(CDF Collab.)
ABBIENDI	99J	EPJ C12 609	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABE	99P	PR D60 092005	F. Abe <i>et al.</i>	(CDF Collab.)
				(

 $^{^{1}}$ Measured for 40 < M($b\overline{b}$) < 75 GeV/ c^{2} . 2 Measured for 75 < M($b\overline{b}$) < 105 GeV/ c^{2} . 3 Measured for M($b\overline{b}$) > 105 GeV/ c^{2} .

ACCIARRI	99D	PL B448 152	M. Acciarri et al.	(L3 Collab.)
BARATE	99G	EPJ C6 555	R. Barate <i>et al.</i>	(ALEPH Collab.)
ABBOTT	98B	PL B423 419	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	98B	PR D57 5382	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	98D	PL B426 193	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	98H	PL B425 399	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	98	PL B416 220	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	98K	PL B436 174	M. Acciarri <i>et al.</i>	
				(L3 Collab.)
ACKERSTAFF	98E	EPJ C1 439	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
BARATE	981	PL B429 169	R. Barate et al.	(ALEPH Collab.)
BARATE	98Q	EPJ C4 387	R. Barate et al.	(ALEPH Collab.)
				· · · · · · · · · · · · · · · · · · ·
BARATE	98V	EPJ C5 205	R. Barate <i>et al.</i>	(ALEPH Collab.)
GLENN	98	PRL 80 2289	S. Glenn <i>et al.</i>	(CLEO Collab.)
ABE	971	PR D55 2546	F. Abe <i>et al.</i>	(CDF Collab.)
ACKERSTAFF		ZPHY C73 397	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
				`
ACKERSTAFF	97N	ZPHY C74 423	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ACKERSTAFF	97W	ZPHY C76 425	K. Ackerstaff et al.	(OPAL Collab.)
ABREU	96E	PL B377 195	P. Abreu et al.	(DELPHI Collab.)
				`
ACCIARRI	96C	ZPHY C71 379	M. Acciarri <i>et al.</i>	(L3 Collab.)
ADAM	96	ZPHY C69 561	W. Adam <i>et al.</i>	(DELPHI Collab.)
ADAM	96D	ZPHY C72 207	W. Adam et al.	(DELPHI Collab.)
ALEXANDER	96	ZPHY C70 357	G. Alexander et al.	`(OPAL Collab.)
				. ` :
BUSKULIC	96F	PL B369 151	D. Buskulic <i>et al</i> .	(ALEPH Collab.)
BUSKULIC	96V	PL B384 471	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
BUSKULIC	96Y	PL B388 648	D. Buskulic et al.	(ALEPH Collab.)
GROSSMAN	96	NP B465 369	Y. Grossman, Z. Ligeti, E. Nardi	(REHO, CIT)
	90			(INEITO, CIT)
Also			Y. Grossman, Z. Ligeti, E. Nardi	
PDG	96	PR D54 1	R. M. Barnett et al.	(PDG Collab.)
UENO	96	PL B381 365	K. Ueno <i>et al.</i>	(AMY Collab.)
ABE,K	95B	PRL 75 3624	K. Abe <i>et al.</i>	(SLD Collab.)
ABREU	95C	PL B347 447	P. Abreu <i>et al.</i>	(DELPHI Collab.)
				` '
ABREU	95D	ZPHY C66 323	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ADAM	95	ZPHY C68 363	W. Adam <i>et al.</i>	(DELPHI Collab.)
AKERS	95Q	ZPHY C67 57	R. Akers <i>et al.</i>	(OPAL Collab.)
BUSKULIC	95	PL B343 444	D. Buskulic et al.	(ÀLEPH Collab.)
ABREU	94F	PL B322 459	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	94J	PL B332 488	P. Abreu et al.	(DELPHI Collab.)
ABREU	94L	ZPHY C63 3	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	94P	PL B341 109	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	94C	PL B332 201	M. Acciarri et al.	` (L3 Collab.)
ACCIARRI	94D	PL B335 542	M. Acciarri <i>et al.</i>	(L3 Collab.)
ALBAJAR	94	ZPHY C61 41	C. Albajar <i>et al.</i>	(UA1 Collab.)
BUSKULIC	94G	ZPHY C62 179	D. Buskulic <i>et al</i> .	(ALEPH Collab.)
ABE	93E	PL B313 288	K. Abe <i>et al.</i>	(VENUS Collab.)
ABE	93J	PRL 71 3421	F. Abe <i>et al.</i>	` (CDF Collab.)
ABREU	93C	PL B301 145	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	93D	ZPHY C57 181	P. Abreu et al.	(DELPHI Collab.)
ABREU	93G	PL B312 253	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACTON	93C	PL B307 247	P.D. Acton et al.	(OPAL Collab.)
ACTON	93L	ZPHY C60 217	P.D. Acton et al.	(OPAL Collab.)
ADRIANI	93J	PL B317 467	O. Adriani et al.	`
				(L3 Collab.)
ADRIANI	93K	PL B317 474	O. Adriani et al.	(L3 Collab.)
ADRIANI	93L	PL B317 637	O. Adriani <i>et al.</i>	(L3 Collab.)
AKERS	93B	ZPHY C60 199	R. Akers <i>et al.</i>	(OPAL Collab.)
BUSKULIC	93B	PL B298 479	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	930	PL B314 459	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
				. ` :
ABREU	92	ZPHY C53 567	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACTON	92	PL B274 513	D.P. Acton et al.	(OPAL Collab.)
ACTON	92C	PL B276 379	D.P. Acton <i>et al.</i>	(OPAL Collab.)
ADEVA	92C	PL B288 395	B. Adeva et al.	(L3 Collab.)
ADRIANI	92	PL B288 412	O. Adriani et al.	(L3 Collab.)
	92B		D. Buskulic <i>et al.</i>	. ` '
BUSKULIC		PL B284 177		(ALEPH Collab.)
BUSKULIC	92F	PL B295 174	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
BUSKULIC	92G	PL B295 396	D. Buskulic <i>et al</i> .	(ALEPH Collab.)
ABE	91G	PRL 67 3351	F. Abe <i>et al.</i>	(CDF Collab.)
ADEVA	91C	PL B261 177	B. Adeva et al.	`(L3 Collab.)
ADEVA	91H	PL B270 111	B. Adeva <i>et al.</i>	(L3 Collab.)
ALBAJAR	91C	PL B262 163	C. Albajar <i>et al.</i>	(UA1 Collab.)
			· · · · · · · · · · · · · · · · · · ·	
ALBAJAR	91D	PL B262 171	C. Albajar <i>et al.</i>	(UA1 Collab.)
ALEXANDER			C Al	(ODAL CILL)
	91G	PL B266 485	G. Alexander et al.	(OPAL Collab.)
DECAMP			G. Alexander et al.D. Decamp et al.	(OPAL Collab.) (ALEPH Collab.)

DECAMP ADEVA BEHREND HAGEMANN LYONS WEIR BRAUNSCH ONG BAND KLEM ONG ALBAJAR ASH BARTEL BROM PAL AIHARA BARTEL SCHAAD ALTHOFF ALTHOFF KOOP ADEVA ADEVA BARTEL FERNANDEZ MATTEUZZI NELSON	91C 90P 90D 90 90 90 89B 89 88 87 87 87 86 85 85 85 84 84 83 84 83 83 83 83 83 83 83 83 83 83 83 83 83	PL B257 492 PL B252 703 ZPHY C47 333 ZPHY C48 401 PR D41 982 PL B240 289 ZPHY C44 1 PRL 62 1236 PL B200 221 PR D37 41 PRL 60 2587 PL B186 247 PRL 58 640 ZPHY C33 339 PL B195 301 PR D33 2708 ZPHY C27 39 PL 163B 277 PL 160B 188 ZPHY C22 219 PL 146B 443 PRL 52 970 PRL 50 799 PRL 51 443 PL 132B 241 PRL 50 0554 PL 129B 141 PRL 50 1542	D. Decamp et al. B. Adeva et al. H.J. Behrend et al. J. Hagemann et al. L. Lyons, A.J. Martin, D.H. Saxon A.J. Weir et al. R. Braunschweig et al. R.A. Ong et al. H.R. Band et al. D.E. Klem et al. C. Albajar et al. W.W. Ash et al. W.W. Ash et al. J.M. Brom et al. T. Pal et al. H. Aihara et al. W. Bartel et al. D.E. Koop et al. C. Altoff et al. M. Althoff et al. M. Althoff et al. D.E. Koop et al. B. Adeva et al. B. Adeva et al. W. Bartel et al. C. Matteuzzi et al. M.E. Nelson et al.	(ALEPH Collab.) (L3 Collab.) (CELLO Collab.) (JADE Collab.) (OXF, BRIS+) (Mark II Collab.) (TASSO Collab.) (Mark II Collab.) (MAC Collab.) (MAC Collab.) (MAC Collab.) (MAC Collab.) (MAC Collab.) (JADE Collab.) (JADE Collab.) (TPC Collab.) (JADE Collab.) (TPC Collab.) (TASSO Collab.) (TASSO Collab.) (TASSO Collab.) (TASSO Collab.) (Mark II Collab.) (Mark-J Collab.) (Mark-J Collab.) (Mark-J Collab.) (MAC Collab.)
---	--	---	---	--